LOCNES (LO-Cost NIR Extended Solar telescope) is a solar telescope installed at the TNG (Telescopio Nazionale Galileo) in the Canary Islands. It feeds the Sun’s light into the NIR spectrograph GIANO-B through a 40-m patch of optical fibers. LOCNES has been designed to obtain high signal-to-noise ratio spectra of the Sun as a star with an accurate wavelength calibration through molecular-band cells. This is an entirely new area of investigation that will provide timely results to improve the search of telluric planets with NIR spectrographs such as iSHELL, CARMENES, NIRPS, and GIANO-B. We will extract several disc-integrated activity indicators and average magnetic field measurements for the Sun in the NIR. These parameters will then be correlated with both the RV of the Sun as a star and the resolved images of the solar disc in visible and NIR. Such an approach will allow for a better understanding of the origin of activity-induced RV variations in the two spectral domains and will help in improving the techniques for their corrections. LOCNES has been installed on the outer part of the TNG dome and it started its operation in the 2023 Springtime when we performed the commissioning of the solar telescope. The main results of the commissioning will be highlighted in this paper.
The realization of low-cost instruments with high technical performance is a goal that deserves efforts in an epoch of fast
technological developments. Such instruments can be easily reproduced and therefore allow new research programs to be
opened in several observatories. We realized a fast optical photometer based on the SiPM (Silicon Photo Multiplier)
technology, using commercially available modules. Using low-cost components, we developed a custom electronic chain
to extract the signal produced by a commercial MPPC (Multi Pixel Photon Counter) module produced by Hamamatsu
Photonics to obtain sub-millisecond sampling of the light curve of astronomical sources (typically pulsars). We built a
compact mechanical interface to mount the MPPC at the focal plane of the TNG (Telescopio Nazionale Galileo), using
the space available for the slits of the LRS (Low Resolution Spectrograph). On February 2014 we observed the Crab
pulsar with the TNG with our prototype photometer, deriving its period and the shape of its light curve, in very good
agreement with the results obtained in the past with other much more expensive instruments. After the successful run at
the telescope we describe here the lessons learned and the ideas that burst to optimize this instrument and make it more
versatile.
We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.