We report on THz emission in single-crystalline SnS2 in response to above bandgap excitation. Symmetry properties of THz generation suggest that its origin is an ultrafast surface shift current, a 2nd order nonlinear effect that can occur as a result of above-gap photoexcitation of a non-centrosymmetric semiconductor. Multilayer SnS2 can exist in several polytypes that differ in the layer stacking. Of those polytypes, 2H and 18R are centrosymmetric while 4H is not. While Raman spectroscopy suggests that the single crystalline SnS2 in our experiments is 2H, its THz emission has symmetry that are fully consistent with the P3m1 phase of 4H polytype. We hypothesize that the stacking disorder, where strain-free stacking faults that interrupt regions of 2H polytype, can break inversion symmetry and result in THz emission. These results lay the foundations for application of SnS2 as an efficient, stable, flexible THz source material, and highlight the use of THz spectroscopy as a sensitive tool for establishing symmetry properties of materials.
Use of nanomaterials for photocatalysis faces challenges such as complex synthesis, high cost, low scalability, and dependance on UV radiation for initiating the photocatalytic activity. We recently demonstrated scalable, one-pot syntheses of one-dimensional (1D) lepidocrocite-based nanofilaments (NFs), 1DL NFs, that have the potential to overcome some of the challenges. 1DL NFs are exceptionally stable in water, have a large surface to volume ratio, and sub-square-nanometer cross sections. Initial reports show the semiconducting nature of this material, with an indirect band gap energy of 4.0 eV, one of the highest ever reported for a titania material. In this work, we present a study of the electronic and optical properties of these newly discovered 1DL NFs using ultrafast transient optical absorption. We show that despite the large band gap of this material, sub-gap states can be accessed with visible light illumination only, and photoexcited species reveal decay times in the nanosecond scale. Long lived photoexcitations in the visible range, without assistance by UV illumination, pave the way for possible application in photocatalysis.
GeS and GeSe are 2D semiconductors with band gaps in the near infrared and predicted high carrier mobility. We find that excitation with 800 nm pulses results in long-lived free photocarriers, persisting for hundreds of picoseconds, in GeS and GeSe noribbons. We also demonstrate that zerovalent Cu intercalation is an effective tool for tuning the photoconductive response. Intercalation of ~ 3 atomic % of zerovalent Cu reduces the carrier lifetime in GeSe and GeS. In GeS, it also shortens the photoconductivity rise and improves carrier mobility.
Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility, a moderate band gap of about 1.6 eV, and highly anisotropic optical properties. In-plane anisotropy and a large in-plane spontaneous electric polarization in GeS monolayers have been predicted to result in significant second order nonlinear effects in response to above-the-gap excitation with photon energy < 2.5 eV1. We have further confirmed it experimentally by demonstrating surface shift current generation in GeS using THz emission spectroscopy with 3.1 eV excitation.3 Here, we use time-resolved THz spectroscopy to investigate the dynamics and lifetimes of photoexcited carriers in GeS single crystals and nanoribbons in response to excitations with energies ranging from 1.5 eV, resonant with the bulk gap, to 3.1 eV. We find that resulting dynamics vary considerably. Lower energy (1.5 eV) excitation injects carriers directly into three low-lying valleys in the conduction band. Those carriers have long, which photoconductivity persisting for over 500 ps, as it can be seen in Fig. 1(a). On the other hand, injecting carriers high into the conduction band results in THz emission due to the shift current as well as into transient photoconductivity that recovers over <100 ps. Pronounced changes in the transient photoconductivity in response to optical excitation with photon energy across the visible-NIR range open intriguing possibilities for applications in ultrafast spectrally-sensitive photodetectors and solar energy conversion.
Discovered in 2013, 2D niobium carbide (Nb2C), a member of the MXene family, has been shown to have many extraordinary properties, such as high photothermal conversion efficiency, strong electron-phonon interactions, strong optical absorption in the near-infrared, and even saturable optical absorption. These unique properties of Nb2C render this MXene potentially useful for a variety of applications, including photonic and optoelectronic devices and even photothermal cancer therapy. Here, we employ both terahertz time-domain spectroscopy (TDS) and time-resolved terahertz spectroscopy (TRTS) to investigate intrinsic and photoinduced conductivity and dynamics of optically injected charge carriers with 1.55 eV excitations in order to understand the photoinduced processes taking place in Nb2C. We find that the photoinduced conductivity in this MXene shows an initial rapid decay over a picosecond time scale, followed by a much longer-lived component that lasts for nanoseconds. We also observe that the long-range conductivity is strongly limited by the nanoflake boundaries.
MXenes are a new class of intrinsically metallic 2D materials. Their wide range of optoelectronic properties they demonstrate as a function of their chemical composition suggest applications in electronic and photonic devices. In this work we present a comprehensive study of the optical properties of three members of the MXene family, Ti3C2Tz, Mo2Ti2C3Tz, and Nb2CTz, using ultrafast transient optical absorption and THz spectroscopy. We find that those properties result from a complicated interaction between free carriers, interband transitions and localized surface plasmon resonances. Elucidating the nature of photoexcitation and dynamics of carriers in these emergent materials will lay the foundation for their potential for optoelectronic applications.
MXenes are 2D transition metal carbides and nitrides with electronic properties that can be tuned by their chemistry and structure. Three members of MXene family, Ti3C2Tz , Mo2Ti2C3Tz and Mo2TiC2Tz are all intrinsically metallic, with high free carrier densities and high carrier mobility within individual nanosheets. However, they respond to photoexcitation in dramatically different ways: while photoexcitation suppresses conductivity in Ti3C2Tz, it results in a long-lived positive photoconductivity in both Mo2Ti2C3Tz and Mo2TiC2Tz. Those responses suggest applications of MXenes in a variety of electro-optical and THz devices.
MXenes are 2D transition metal carbides and nitrides with electronic properties that can be tuned by their chemistry and structure. Three members of MXene family, Ti3C2Tz , Mo2Ti2C3Tz and Mo2TiC2Tz are all intrinsically metallic, with high intrinsic free carrier densities and high carrier mobility within individual nanosheets. However, they respond to photoexcitation in dramatically different ways: while photoexcitation suppresses conductivity in Ti3C2Tz, it results in a long-lived positive photoconductivity in both Mo2Ti2C3Tz and Mo2TiC2Tz. Those responses suggest applications of MXenes in a variety of electro-optical and THz devices.
MXenes are a new family of two-dimensional transition metal carbides, nitride and carbonitrides with high conductivity and versatile chemical structures. Here we have used THz spectroscopy to study microscopic conductivity and photoinduced carrier dynamics in two Mo-based MXenes, Mo2Ti2C3Tz and Mo2TiC2Tz. Both exhibit high intrinsic carrier densities (~ 1020 cm-3 in Mo2Ti2C3Tz, and ~ 1019 cm-3 in Mo2TiC2Tz), mobilities, and high conductivities within individual nanosheets. We also observe that optical excitation increases their conductivity, unlike Ti3C2Tz, in which photoexcitation suppresses conductivity for nanoseconds. Vacuum annealing improves the long-range transport of photoinduced carriers and further increases their lifetime, as it results in de-intercalation of water and other species from van der Waals gaps between the nanosheets in the films. High and long-lived photoinduced conductivity suggests Mo-based MXenes a promising candidate for optoelectronic, sensing and photoelectrochemical applications.
Germanium sulfide (GeS) is a 2D semiconductor with high carrier mobility and a moderate band gap (~1.5 eV for multilayer crystals), which holds promise for high-speed optoelectronics and energy conversion. Here, we use time resolved THz spectroscopy to investigate how intercalation of Au, Cu, and Sn impacts the photoexcited carrier dynamics and transient photoconductivity of GeS nanoribbons. We find that zero-valent metals affect the photoexcited carrier lifetime and mobility in different ways. Intercalation of GeS with Cu reduces the lifetime of carriers from ~ 120 ps to 60 ps, while Au and Sn intercalation do not. At the same time, intercalation with Cu, Sn and Au significantly enhances the scattering time of photoexcited carriers (~120 fs vs ~65 fs without intercalation), highlighting the potential of zero-valent metal intercalation as a tool for engineering the optoelectronic properties of GeS nanostructures for application in high-speed electronic devices.
We use time-resolved THz spectroscopy to study microscopic conductivity and photoinduced carrier dynamics in MBE-grown 100 nm thick (Bi1-xInx)2Se3 thin films with indium concentration varying from x=0 to x=0.5. Both intrinsic and photoinduced conductivity in Bi2Se3 is significantly higher compared to the films with x=0.25 and x=0.50, with carriers that are not constrained by the twin domain boundaries and exhibit high mobility of 1100 cm2/Vs. We find that introducing indium with concentration of x=0.25 and higher, above the threshold for a topological to trivial transition, suppresses both intrinsic and photoinduced conductivity by over an order of magnitude and reduces the lifetime of photoexcited carriers. These findings demonstrate that controlling indium concentration in (Bi1-xInx)2Se3 films provides an avenue to design (Bi1- xInx)2Se3 films with desired properties for high-speed optoelectronic devices.
Group-IV monochalcogenides belong to a family of 2D layered materials. Monolayers of group-IV monochalcogenides GeS, GeSe, SnS and SnSe have been theoretically predicted to exhibit a large shift current owing to a spontaneous electric polarization at room temperature. Using THz emission spectroscopy, we find that above band gap photoexcitation with ultrashort laser pulses results in emission of nearly single-cycle THz pulses due to a surface shift current in multi-layer, sub-μm to few- μm thick GeS and GeSe, as inversion symmetry breaking at the crystal surface enables THz emission by the shift current. Experimental demonstration of THz emission by the surface shift current puts this layered group-IV monochalcogenides forward as a candidate for next generation shift current photovoltaics, nonlinear photonic devices and THz sources.
We have observed emission of terahertz radiation from photoexcited GeS nanosheets without external bias. We attribute the origin of terahertz pulse emission to the shift current resulting from inversion symmetry breaking in ferroelectric single- or few-layer GeS nanosheets. We find that the direction of the shift current, and the corresponding polarity of the emitted THz pulses is determined by the spontaneous polarization in the ferroelectric GeS nanosheets. Experimental observation of zero-bias photocurrents puts GeS nanosheets forth as a promising candidate material for applications in third generation photovoltaics based on shift current, or bulk photovoltaic effect.
The growing experimental evidence suggests that broadband, picosecond-duration THz pulses may influence biological systems and functions. While the mechanisms by which THz pulse-induced biological effects are not yet known, experiments using in vitro cell cultures, tissue models, as well as recent in vivo studies have demonstrated that THz pulses can elicit cellular and molecular changes in exposed cells and tissues in the absence of thermal effects. Recently, we demonstrated that intense, picosecond THz pulses induce phosphorylation of H2AX, indicative of DNA damage, and at the same time activate DNA damage response in human skin tissues. We also find that intense THz pulses have a profound impact on global gene expression in human skin. Many of the affected genes have important functions in epidermal differentiation and have been implicated in skin cancer and inflammatory skin conditions. The observed THzinduced changes in expression of these genes are in many cases opposite to disease-related changes, suggesting possible therapeutic applications of intense THz pulses.
We have recently developed an ultrafast terahertz-pulse-coupled scanning tunneling microscope (THz-STM) that can
image nanoscale dynamics with simultaneous 0.5 ps temporal resolution and 2 nm spatial resolution under ambient
conditions. Broadband THz pulses that are focused onto the metallic tip of an STM induce sub-picosecond voltage
transients across the STM junction, producing a rectified current signal due to the nonlinear tunnel junction currentvoltage
(I-V) relationship. We use the Simmons model to simulate a tunnel junction I-V curve whereby a THz pulse
induces an ultrafast voltage transient, generating milliamp-level rectified currents over sub-picosecond timescales. The
nature of the ultrafast field emission tunneling regime achieved in the THz-STM is discussed.
We detail a new ultrafast scanning tunneling microscopy technique called THz-STM that uses terahertz (THz) pulses coupled to the tip of a scanning tunneling microscope (STM) to directly modulate the STM bias voltage over subpicosecond time scales [1]. In doing so, THz-STM achieves ultrafast time resolution via a mode complementary to normal STM operation, thus providing a general ultrafast probe for stroboscopic pump-probe measurements. We use THz-STM to image ultrafast carrier trapping into a single InAs nanodot and demonstrate simultaneous nanometer (2 nm) spatial resolution and subpicosecond (500 fs) temporal resolution in ambient conditions. Extending THz-STM to vacuum and low temperature operation has the potential to enable studies of a wide variety of subpicosecond dynamics on materials with atomic resolution.
Pulsed terahertz (THz) imaging has been suggested as a novel high resolution, noninvasive medical diagnostic tool.
However, little is known about the influence of pulsed THz radiation on human tissue, i.e., its genotoxicity and effects on
cell activity and cell integrity. We have carried out a comprehensive investigation of the biological effects of THz
radiation on human skin tissue using a high power THz pulse source and an in vivo full-thickness human skin tissue
model. We have observed that exposure to intense THz pulses causes DNA damage and changes in the global gene
expression profile in the exposed skin tissue. Several of the affected genes are known to play major roles in human
cancer. While the changes in the expression levels of some of them suggest possible oncogenic effects of pulsed THz
radiation, changes in the expression of the other cancer-related genes might have a protective influence. This study may
serve as a roadmap for future investigations aimed at elucidating the exact roles that all the affected genes play in skin
carcinogenesis and in response to pulsed THz radiation.
Nonlinear dynamics of free-carriers in direct bandgap semiconductors at terahertz (THz) frequencies is studied using
intense few-cycle pulses. Techniques as Z-scan, THz-pump / THz-probe, and optical-pump/ THz-probe are employed to
explore nonlinear interactions in both n-doped and photoexcited systems. The physical mechanism that gives rise to such
interactions is found to be intervalley scattering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.