Data are transmitted at a higher rate over long and short distances to fulfill the global requirement using all-optical (AO) technology. The reliability or accuracy of data transmission is also a key factor along with the higher data rate to achieve today’s desire perfectly. The cyclic redundancy check (CRC) code is a powerful, robust, and widely used error detecting code for data communication system and storage devices to find any unintentional changes during transmission. A (7, 4) CRC encoder has been analyzed numerically using AO silicon microring resonator (MRR) at a high-operational speed of 260 Gbps. CRC encoder is designed using MRR-based XOR gates and D flip flops. The proposed CRC encoder circuit is validated through MATLAB simulation. The optimization of essential parameters is accomplished through simulation against various metrics. These parameters could be utilized for practical execution of this design.
All-optical universal logic gates are theoretically investigated and demonstrated in a single silicon microring resonator due to mode conversion. Mode conversion takes place at the switching speed of 0.2 ps and at ultrahigh quality factor (Q-factor) and requires low power. Simulated results obtained from the finite-difference-time-domain method verified our proposed model. The Q-factor for NOT, NAND, and NOR logic gates is noted as high as around 1500, 1500, and 2400, respectively. The design is simple and silicon-on-insulator compatible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.