This paper describes a new approach to the automatic detection of human faces and places depicted in photographs taken on cameraphones. Cameraphones offer a unique opportunity to pursue new approaches to media analysis and management: namely to combine the analysis of automatically gathered contextual metadata with media content analysis to fundamentally improve image content recognition and retrieval. Current approaches to content-based image analysis are not sufficient to enable retrieval of cameraphone photos by high-level semantic concepts, such as who is in the photo or what the photo is actually depicting. In this paper, new methods for determining image similarity are combined with analysis of automatically acquired contextual metadata to substantially improve the performance of face and place recognition algorithms. For faces, we apply Sparse-Factor Analysis (SFA) to both the automatically captured contextual metadata and the results of PCA (Principal Components Analysis) of the photo content to achieve a 60% face recognition accuracy of people depicted in our database of photos, which is 40% better than media analysis alone. For location, grouping visually similar photos using a model of Cognitive Visual Attention (CVA) in conjunction with contextual metadata analysis yields a significant improvement over color histogram and CVA methods alone. We achieve an improvement in location retrieval precision from 30% precision for color histogram and CVA image analysis, to 55% precision using contextual metadata alone, to 67% precision achieved by combining contextual metadata with CVA image analysis. The combination of context and content analysis produces results that can indicate the faces and places depicted in cameraphone photos significantly better than image analysis or context analysis alone. We believe these results indicate the possibilities of a new context-aware paradigm for image analysis.
The DEIMOS spectrograph is a multi-object spectrograph being built for Keck II. DEIMOS was delivered in February 2002, became operational in May, and is now about three-quarters of the way through its commissioning period. This paper describes the major problems encountered in completing the spectrograph, with particular emphasis on optical quality and image motion. The strategies developed to deal with these problems are described. Overall, commissioning is going well, and it appears that DEIMOS will meet all of its major performance goals.
Marc Davis, Sandra Faber, Jeffrey Newman, Andrew Phillips, Richard Ellis, Charles Steidel, C. Conselice, Alison Coil, D. Finkbeiner, David Koo, Puragra Guhathakurta, B. Weiner, Ricardo Schiavon, C. Willmer, Nicholas Kaiser, Gerard Luppino, Gregory Wirth, Andrew Connolly, Peter Eisenhardt, M. Cooper, B. Gerke
The DEIMOS spectrograph has now been installed on the Keck-II telescope and commissioning is nearly complete. The DEEP2 Redshift Survey, which will take approximately 120 nights at the Keck Observatory over a three year period and has been designed to utilize the power of DEIMOS, began in the summer of 2002. The multiplexing power and high efficiency of DEIMOS enables us to target 1000 faint galaxies per clear night. Our goal is to gather high-quality spectra of ≈ 60,000 galaxies with z>0.75 in order to study the properties and large scale clustering of galaxies at z ≈ 1. The survey will be executed at high spectral resolution, R=λ/Δλ ≈ 5000, allowing us to work between the bright OH sky emission lines and to infer linewidths for many of the target galaxies (for several thousand objects, we will obtain rotation curves as well). The linewidth data will facilitate the execution of the classical redshift-volume cosmological test, which can provide a precision measurement of the equation of state of the Universe. This talk reviews the project, summarizes our science goals and presents some early DEIMOS data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.