The presence of round cystic and solid mass lesions identified at mammogram screenings account for a large number of recalls. These recalls can cause undue patient anxiety and increased healthcare costs. Since cystic masses are nearly always benign, accurate classification of these lesions would be allow a significant reduction in recalls. This classification is very difficult using conventional mammogram screening data, but this study explores the possibility of performing the task on dual-energy full field digital mammography (FFDM) data. Since clinical data of this type is not readily available, realistic simulated data with different sources of variation are used. With this data, a deep convolutional neural network (CNN) was trained and evaluated. It achieved an AUC of 0.980 and 42% specificity at the 99% sensitivity level. These promising results should motivate further development of such imaging systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.