We propose a 1 x 2 optical prism deflector switch which consists of two parabolic waveguide mirrors, multiple-stage micro prisms filled with polymer, and input/output waveguides. This type of switch has high extinction ratio characteristics compared with the interference-type switch.
The number of prisms is 20 or 30, and the vertex angle of the prism is about 0.1 rad. The prisms are so thin that the coupling loss can be reduced. The waveguide mirror is formed by depositing Ag on the side wall of the deep trench in a slab waveguide. The light from the input waveguide reflects at the parabolic mirror to be the parallel light, propagates through the prisms and reflects at the other parabolic mirror to converge on the output waveguide.
The prisms have thermo-optic (TO) coefficient of -1.3 x 10-4/K while the slab waveguide has that of -6.7 x 10-6/K. Therefore, by raising the temperature around prisms, the light is deflected through the prisms and the switch is brought into the cross state. On the other hand, without rise in temperature, the light goes straight. The distance between adjacent outputs waveguides is 30mm, corresponding to the change in the temperature of 30 K. The size of devise is 4.4 mm x 8.0 mm with 20 prisms and 3.3mm x 6.5mm with 30 prisms, respectively. With 20 prisms at a wavelength of 1555 nm, a minimum insertion loss of 0.65 was measured in bar state.
A beam steering type 1:4 optical switch with phase shifters in a silica arrayed-waveguide is proposed. It consists of collimating waveguide mirrors, an arrayed-waveguide which has deep trenches with polymer materials, and input/output waveguides. It can switch the output port of the incident light at high extinction ratio. The incident light is guided to the front mirror, collimated, and input to the arrayed-waveguide. Each waveguide in the arrayed-waveguide has the same length. The number of narrow trenches filled with polymer linearly increases in order. The refractive index of the polymer is set to the effective index of the single mode silica waveguide at certain temperature. The propagation direction of the output light from the arrayed-waveguide can be controlled by changing the temperature of the device because of the large thermo-optic coefficient of the polymer. The second mirror converges the light into one of the output waveguide.
We designed two types of the switch which had 9 or 15 waveguides in the arrayed waveguide and they are under fabrication. The chip sizes are about 2.5 mm x 8.0 mm and 2.5 mm x 9.0 mm, respectively. The required temperature shift for the switching from one output port to the adjacent output port is 20 [K] when we use the polymer with a TO coefficient of -1.8x10-4 [1/K].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.