In this study we show clinical application of Spectral Optical Coherence Tomography (SOCT), which enables operation with 40 times higher speed than commercial Stratus OCT instrument. Using high speed SOCT instrument it is possible to collect more information and increase the quality of reconstructed cross-sectional retinal images. Two generations of compact and portable clinical SOCT instruments were constructed in Medical Physics Group at Nicolaus Copernicus University in Poland. The first SOCT instrument is a low-cost system operating with standard, 12 micrometer axial resolution and the second is high resolution system using combined superluminescent diodes light source, which enables imaging with 4.8 micrometer axial resolution. Both instruments have worked in Ophthalmology Clinic of Collegium Medicum in Bydgoszcz. During the study we have examined 44 patients with different pathologies of the retina including: Central Serous Chorioretinopathy (CSC), Choroidal Neovascularization (CNV), Pigment Epithelial Detachment (PED), Macular Hole, Epiretinal Membrane, Outer Retinal Infarction etc. All these pathologies were first diagnosed by classical methods (like fundus camera imaging and angiography) and then examined with the aid of SOCT system. In this contribution we present examples of SOCT cross-sectional retinal imaging of pathologic eyes measured with standard resolution. We also compare cross-sectional images of pathology obtained by standard and high resolution systems.
Complex Spectral Optical Tomography (CSOCT) in comparison to ordinary SOCT produces images free of parasitic mirror terms which results in double extension of the measurement range. This technique, however, requires the exact knowledge about the values of the introduced phase shifts in consecutive measurements. Involuntary object movements, which shift the phase from one measurement to another are always present in in vivo experiments. This introduces residual ghosts in cross-sectional images. Here we present a new method of data analysis, which allows determining the real phase shifts introduced during the measurement, and which helps to reduce the ghost effect. Two-dimensional cross-sectional in vivo images of human eye and skin obtained with the aid of this improved complex spectral OCT technique are shown. The method is free of polychromatic phase error originating from the wavelength dependence of the phase shift introduced by the reference mirror translation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.