KEYWORDS: Near field, Microscopy, Optical imaging, Mid-IR, Switching, Near field scanning optical microscopy, Crystals, Terahertz radiation, Switches, Super resolution microscopy
KEYWORDS: Semiconductors, Near field, Silicon carbide, Semiconductor materials, Near field optics, Spectroscopes, Infrared imaging, Infrared radiation, Phonons, Near field scanning optical microscopy
We show how extended defects in wide bandgap semiconductors manifest in the nanoscale infrared phonon response probed by scattering-type scanning near-field optical microscopy (s-SNOM). We correlate the s-SNOM response of various defects in 4H-SiC with UV-photoluminescence, secondary electron and electron channeling contrast imaging, and transmission electron microscopy. We identify evidence of step-bunching, recombination-induced stacking faults, and threading screw dislocations, and also demonstrate the interaction of surface phonon polaritons with extended defects. Our s-SNOM results help to advance material growth efforts for electronic, photonic, phononic, and quantum optical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.