Son of X-Shooter (SOXS) will be a high-efficiency spectrograph with a mean Resolution-Slit product of ~4500 over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph, and the Acquisition Camera) connected by the Common Path system to the NTT, and the Calibration Unit. The Common Path is the backbone of the instrument and the interface to the NTT Nasmyth focus flange. The instrument project went through the Final Design Review in 2018 and is currently in Assembly Integration and test (AIT) Phase. This paper outlines the observing modes of SOXS and the efficiency of each subsystem and the laboratory test plan to evaluate it.
SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous flow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions (Ref. 1–12).
SOXS (Son Of X-Shooter) will be a spectrograph for the ESO NTT telescope capable to cover the optical and NIR bands, based on the heritage of the X-Shooter at the ESO-VLT. SOXS will be built and run by an international consortium, carrying out rapid and longer term Target of Opportunity requests on a variety of astronomical objects. SOXS will observe all kind of transient and variable sources from different surveys. These will be a mixture of fast alerts (e.g. gamma-ray bursts, gravitational waves, neutrino events), mid-term alerts (e.g. supernovae, X-ray transients), fixed time events (e.g. close-by passage of minor bodies). While the focus is on transients and variables, still there is a wide range of other astrophysical targets and science topics that will benefit from SOXS. The design foresees a spectrograph with a Resolution-Slit product ≈ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. The limiting magnitude of R~20 (1 hr at S/N~10) is suited to study transients identified from on-going imaging surveys. Light imaging capabilities in the optical band (grizy) are also envisaged to allow for multi-band photometry of the faintest transients. This paper outlines the status of the project, now in Final Design Phase.
KEYWORDS: Electronics, Control systems, Switches, Photonic integrated circuits, Computer programming, Near infrared, Data transmission, Sensors, Power supplies, Spectrographs
SOXS (Son Of X-Shooter) is a unique spectroscopic facility that will operate at the ESO New Technology Telescope (NTT) in La Silla from 2021 onward. The spectrograph will be able to cover simultaneously the UV-VIS and NIR bands exploiting two different arms and a Common Path feeding system. We present the design of the SOXS instrument control electronics. The electronics controls all the movements, alarms, cabinet temperatures, and electric interlocks of the instrument. We describe the main design concept. We decided to follow the ESO electronic design guidelines to minimize project time and risks and to simplify system maintenance. The design envisages Commercial Off-The-Shelf (COTS) industrial components (e.g. Beckhoff PLC and EtherCAT fieldbus modules) to obtain a modular design and to increase the overall reliability and maintainability. Preassembled industrial motorized stages are adopted allowing for high precision assembly standards and a high reliability. The electronics is kept off-board whenever possible to reduce thermal issues and instrument weight and to increase the accessibility for maintenance purpose. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the work and is part of a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
Son Of X-Shooter (SOXS) is the new instrument for the ESO 3.5 m New Technology Telescope (NTT) in La Silla site (Chile) devised for the spectroscopic follow-up of transient sources. SOXS is composed by two medium resolution spectrographs able to cover the 350-2000 nm interval. An Acquisition Camera will provide a light imaging capability in the visible band. We present the procedure foreseen for the Assembly, Integration and Test activities (AIT) of SOXS that will be carried out at sub-systems level at various consortium partner premises and at system level both in Europe and Chile.
SOXS (Son of X-shooter) is a wide band, medium resolution spectrograph for the ESO NTT with a first light expected in early 2021. The instrument will be composed by five semi-independent subsystems: a pre-slit Common Path (CP), an Acquisition Camera (AC), a Calibration Unit (CU), the NIR spectrograph, and the UV-VIS spectrograph. In this paper, we present the mechanical design of the subsystems, the kinematic mounts developed to simplify the final integration procedure and the maintenance. The concept of the CP and NIR optomechanical mounts developed for a simple pre- alignment procedure and for the thermal compensation of reflective and refractive elements will be shown.
The Son Of X-Shooter (SOXS)1 is a medium resolution spectrograph (R ~ 4500) proposed for the ESO 3.6m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m = 1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is > 60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings2-10 describing the full SOXS instrument.
We present the NIR spectrograph of the Son Of XShooter (SOXS) instrument for the ESO-NTT telescope at La Silla (Chile). SOXS is a R~4,500 mean resolution spectrograph, with a simultaneously coverage from about 0.35 to 2.00 μm. It will be mounted at the Nasmyth focus of the NTT. The two UV-VIS-NIR wavelength ranges will be covered by two separated arms. The NIR spectrograph is a fully criogenic echelle-dispersed spectrograph, working in the range 0.80- 2.00 μm, equipped with an Hawaii H2RG IR array from Teledyne, working at 40 K. The spectrograph will be cooled down to about 150 K, to lower the thermal background, and equipped with a thermal filter to block any thermal radiation above 2.0 μm. In this poster we will show the main characteristics of the instrument along with the expected performances at the telescope.
SOXS (Son of X-Shooter) will be the new medium resolution (R~4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.
An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the ‘4C’ design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions1-9 describing the SOXS design and properties as it is about to face the Final Design Review.
SOXS (Son Of X-Shooter) is a new spectrograph for the ESO NTT telescope, currently in the final design phase. The main instrument goal is to allow the characterization of transient sources based on alerts. It will cover from near-infrared to visible bands with a spectral resolution of R ∼ 4500 using two separate, wavelength-optimized spectrographs. A visible camera, primarily intended for target acquisition and secondary guiding, will also provide a scientific “light” imaging mode. In this paper we present the current status of the design of the SOXS instrument control software, which is in charge of controlling all instrument functions and detectors, coordinating the execution of exposures, and implementing all observation, calibration and maintenance procedures. Given the extensive experience of the SOXS consortium in the development of instruments for the VLT, we decided to base the design of the Control System on the same standards, both for hardware and software control. We illustrate the control network, the instrument functions and detectors to be controlled, the overall design of SOXS Instrument Software (INS) and its main components. Then, we provide details about the control software for the most SOXS-specific features: control of the COTS-based imaging camera, the flexures compensation system and secondary guiding.
Son of X-Shooter (SOXS) will be a high-efficiency spectrograph with a mean Resolution-Slit product of 4500 (goal 5000) over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph and the Acquisition Camera) connected by the Common Path system to the NTT and the Calibration Unit. The Common Path is the backbone of the instrument and the interface to the NTT Nasmyth focus flange. The light coming from the focus of the telescope is split by the common path optics into the two different optical paths in order to feed the two spectrographs and the acquisition camera. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the Common Path system and is accompanied by a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument’s observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focusing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.
We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60±0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1 arcsec. The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255±0.009 milliarcseconds/pixel for H2 coronagraphic images and -1.70±0.08°. Analyses of the IFS data indicate a pixel scale of 7.46±0.02 milliarcseconds/pixel and a North angle of -102.18±0.13°. We finally discuss plans for providing astrometric calibration to the SPHERE users outside the instrument consortium.
The VLT second generation instrument SPHERE (Spectro-Polarimetric High-contrast Exoplanets Research) was commissioned in the Summer of 2014, and offered to the community in the Spring of 2015. SPHERE is a high contrast imager that exploits its three scientific channels in order to observe and discover young warm exoplanets in the glare of their host stars. The three scientific instrument are: ZIMPOL, a polarization analyzer and imager that works in the visible range of wavelength, IRDIS a dual band imager and spectro polarimetric Camera that works in the NIR range up to K band, and IFS, an integral field spectrograph working in the YJH band. Very important is the complementarity between IRDIS and IFS. The former has a larger Field of view (about 12 arcseconds) while the IFS push its examination very close to the central star (FoV ~ 1.7 arcsec). In one year of operational time a lot of very interesting scientific cases were investigated and very nice results were gathered. In this paper we would like to focus the attention on the high quality results and performances obtained with the IFS.
In the context of ADONI, the newly constituted laboratory for INAF Adaptive Optics activities, it is foreseen to set-up a facility accessible to the Italian and international AO community, with the purpose of facilitating the testing of critical sub-systems or components (which may be part of instruments under construction), or prototypes of innovative concepts which may require on-sky demonstrations. The 182cm Copernico Telescope located in Asiago (Italy) has been selected to be a suitable place to set-up this public facility, where a common optical bench will be made available at the Coudé focus to host visiting instrumentation. In this paper we describe the opto-mechanical train to the Coudé focal station to be implemented for the laboratory set-up, and we sketch out the foreseen telescope refurbishing activities to implement this multi-purpose testing facility dedicated to AO related projects.
SPHERE is an instrument aimed to the search for low mass companions around young stars in the solar neighborhood. To achieve this goal light from the host star (and in particular the speckle pattern due to the telescope aberrations) should be strongly attenuated while avoiding to cancel out the light from the faint companion. Different techniques can be used to fulfill this aim exploiting the multi-wavelength datacube produced by the Integral Field Spectrograph that is one of the scientific modules that composes SPHERE. In particular we have tested the application of the Spectral Deconvolution and of the Principal Components Analysis techniques. Both of them allow us to obtained a contrast better than 10−5 with respect to the central star at separations of the order of 0.4 arcsec. A further improvement of one order of magnitude can be obtained by combining one of these techniques to the Angular Differential Imaging. To investigate the expected performance of IFS in characterizing detected objects we injected in laboratory data synthetics planets with different intrinsic fluxes and projected separations from the host star. We performed a complete astrometric and photometric analysis of these images to evaluate the expected errors on these measurements, the spectral fidelity and the differences between the reduction methods. The main issue is to avoid the strong self-cancellation that is inherent to all the reduction methods. We have in particular tested two possible solutions: the use of a mask during the reduction on the positions of the companions or, alternatively, using a KLIP procedure for the IFS. This latter seems to give better results in respect o the classical PCA, allowing us to obtain a good spectral reconstruction for simulated objects down to a contrast of ~10-5.
SPHERE is an extrasolar planet imager whose goal is to detect giant extrasolar planets in the vicinity of bright stars and
to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an
extreme-Adaptive Optics (AO) turbulence correction, a pupil tracker and NIR and Visible coronagraph devices. At its
back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the Near Infrared (NIR)
(0.95 ≤λ≤2.32 μm) and a high resolution polarization camera covers the visible (0.6 ≤λ≤0.9 μm). The IFS is a low resolution spectrograph (R~50) operates in the near IR (0.95≤λ≤1.6 μm), an ideal wavelength range for the detection of planetary features, over a field of view of about 1.7 x 1.7 square arcsecs. Form spectra it is possible to reconstruct monochromatic images with high contrast (10-7) and high spatial resolution, well inside the star PSF. In this paper we describe the IFS, its calibration and the results of several performance which IFS underwent. Furthermore, using the IFS characteristics we give a forecast on the planetary detection rate.
Direct imaging of exoplanet is one of the most exciting field of planetology today. The light coming from exoplanet orbiting their host star witnesses for the chemical composition of the atmosphere, and the potential biomarkers for life. However, the faint flux to be imaged, very close to the huge flux of the parent star, makes this kind of observation extremely difficult to perform from the ground. The direct imaging instruments (SPHERE [1], GPI [2]) are nowaday reaching lab maturity. Such instrument imply the coordination of XAO for atmospherical turbulence real-time correction, coronagraphy for star light extinction, IR Dual band camera, IFS, and visible polarimetry. The imaging modes include single and double difference (spectral and angular). The SPHERE project is now at the end of AIT phase. This paper presents the very last results obtained in laboratory, with realistic working conditions. These AIT results allows one to predict on-sky performance, that should come within the next weeks after re-installation at Very Large Telescope at Paranal.
SPHERE is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars and
to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an
extreme-Adaptive Optics (AO) turbulence correction, pupil tracker and NIR and Visible coronagraph devices. At its
back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the Near Infrared (NIR) Y,
J, H and Ks bands (0.95≤λ≤2.32 μm) and a high resolution polarization camera covers the visible (0.6≤λ≤0.9 μm). The
IFS is a low resolution spectrograph (R~50) which works in the near IR (0.95≤λ≤1.6 μm), an ideal wavelength range for
the detection of planetary features. The IFS is based on a new conception microlens array (BIGRE) of 145X145 lenslets
designed to reduce as low as possible the contrast. The IFU will cover a field of view of about 1.7 x 1.7 square arcsecs
reaching a contrast of 10-7, giving an high contrast and high spatial resolution "imager" able to search for planet well
inside the star PSF. In the last year it has been integrated onto the huge optical bench of SPHERE and fully tested.
Currently in the phase of the assembly, the Integral Field Spectrograph (IFS) is part of Sphere, which will see the first
light at ESO Paranal as a VLT second generation instruments in the 2011. In this paper we will describe the main aspects
in the Assembly, Integration and Testing phase (AIT) of the instrument at INAF-Osservatorio Astronomico di Padova
(OAPD) laboratory at the current stage. As result of the AIT, a full set of tests and qualifications of IFS subcomponents
will be discussed. These tests have been designed and realized with the purpose to obtain an accurate comparison
between design goals and effective performances of the instrument.
The SPHERE is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars
and to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made
of an extreme-Adaptive Optics (AO) wavefront correction, a pupil tracker and diffraction suppression through a variety
of coronagraphs. At its back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the
Near Infrared (NIR) Y, J, H and Ks bands (0.95 - 2.32μm), and a high resolution polarization camera covers the optical
range (0.6 - 0.9 μm). The IFS is a low resolution spectrograph (R~50) working in the near IR (0.95-1.65 microns), an
ideal wavelength range for the detection of giant planet features. In our baseline design the IFU is a new philosophy
microlens array of about 145x145 elements designed to reduce as much as possible the cross talk when working at
diffraction limit. The IFU will cover a field of view of about 1.7 x 1.7 square arcsecs reaching a contrast of 10-7,
providing a high contrast and high spatial resolution "imager" able to search for planet well inside the star PSF.
SPHERE, the ESO extra-solar planet imager for the VLT is aimed at the direct detection and spectral characterization of
extra-solar planets. Its whole design is optimized towards reaching the highest contrast in a limited field of view and at
short distances from the central star. SPHERE has passed its Final Design Review (FDR) in December 2008 and it is in
the manufacturing and integration phase. We review the most challenging specifications and expected performance of
this instrument; then we present the latest stage of the design chosen to meet the specifications, the progress in the
manufacturing as well as the integration and test strategy to insure gradual verification of performances at all levels.
Direct detection and spectral characterization of extra-solar planets is one of the most exciting but also one of the most
challenging areas in modern astronomy. The challenge consists in the very large contrast between the host star and the
planet, larger than 12.5 magnitudes at very small angular separations, typically inside the seeing halo. The whole design
of a "Planet Finder" instrument is therefore optimized towards reaching the highest contrast in a limited field of view and
at short distances from the central star. Both evolved and young planetary systems can be detected, respectively through
their reflected light and through the intrinsic planet emission. We present the science objectives, conceptual design and
expected performance of the SPHERE instrument.
SPHERE is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars and
to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made of an
extreme-Adaptive Optics (AO) turbulence correction, pupil tracker and interferential coronagraphs. At its back end, a
differential dual imaging camera and an integral field spectrograph (IFS) work in the Near Infrared (NIR) Y, J, H and Ks
bands (0.95 - 2.32μm) and a high resolution polarization camera covers the visible (0.6 - 0.9 μm). The IFS is a low
resolution spectrograph (R~50 and R~30) which works in the near IR (0.95-1.7 microns), an ideal wavelength range for
the detection of planetary features. In our baseline design the IFU is a new philosophy microlens array of about 145x145
elements designed to reduce as low as possible the contrast. The IFU will cover a field of view of about 1.8 x 1.8 square
arcsecs reaching a contrast of 10-7, giving an high contrast and high spatial resolution "imager" able to search for planet
well inside the star PSF.
Integral field spectroscopy coupled with an extreme adaptive optics system and coronagraphy allows a marked
improvement of the standard spectroscopic simultaneous differential imaging calibration technique. Hence, with an
integral field spectrograph (IFS) direct imaging of extrasolar giant planets becomes potentially feasible over a wide
range of ages, masses, and separations from the hosting stars. This aim represents the prime goal of the planet finder
instrument for the VLT (SPHERE). Inside SPHERE, the IFS channel exploits various spectral features of the candidate
planets in the near infrared, in order to reduce the speckles noise at the level of the stellar background noise, over a field
of view comprised between the coronagraphic inner working angle and the outer working angle provided by the
SPHERE extreme adaptive optic system (SAXO). The IFS allows then to realize an extensive spectroscopic
simultaneous differential imaging calibration technique, and at least in few cases, to get the spectrum of the candidate
extrasolar giant planets. Here we present the IFS baseline design, which is based upon a new optical concept we
developed for its integral field unit (BIGRE). When applied to the technical specifications of SPHERE IFS, a BIGRE
integral field unit is able to take into account all the effects appearing when integral field spectroscopy is used in
diffraction limited conditions and for high-contrast imaging purposes. Finally a BIGRE-oriented IFS optical design is
shown here to reach the requested high optical quality by standard lenses-based optical devices.
IFS is the Integral Field Spectrograph for SPHERE, a 2nd generation instrument for VLT devoted to the search of
exoplanets.
To achieve the performances required for the IFS a new device sampling the focal plane has been designed, prototyped
and tested in laboratory. This device named BIGRE consists of a system made of two microlens arrays with different
focal lengths and thickness equal to the sum of them and precisely aligned each other. Moreover a mask has been
deposited on the first array to produce a field stop for each lenslet. Laboratory tests confirmed that specifications and
properties of the prototype are met by state of the art on optics microlens manufacturing.
To characterize the device, a simulator of IFS has been built in laboratory and the BIGRE properties have been tested in
real working conditions, showing that the design of the double array fulfills IFS requirements.
The 2nd generation VLT instrument SPHERE will include an integral field spectrograph to enhance the capabilities
of detection of planetary companions close to bright stars. SPHERE-IFS is foreseen to work in near
IR (0.95-1.65 micron) at low spectral resolution. This paper describes the observing strategies, the adopted
hardware solutions for calibrating the instrument, and the data reduction procedures that are mandatory for the
achievement of the extreme contrast performances for which the instrument is designed.
Direct detection and spectral characterization of Extrasolar Planets is one of the most exciting but also one of the most
challenging areas in modern astronomy.
For the second-generation instrumentation on the VLT, ESO has supported the study and the design of instrument, called
SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research). SPHERE includes a powerful extreme adaptive
optics system, various coronagraphs, an infrared differential imaging camera (IRDIS), an infrared Integral Field
Spectrograph (IFS) and a visible differential polarimeter (ZIMPOL).
IFS is a very low resolution spectrograph (R~50) which works in the near IR (0.95-1.7 microns), an ideal wavelength
range for the ground based detection of planetary features. The IFS requirements have been met via an innovative
integrated design merging passive stiffness and active control to obtain a light, accessible and functional assembly. This
paper gives a description of its cryogenic and mechatronic integrated design.
The SPHERE is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars
and to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made
of an extreme-Adaptive Optics (AO) turbulence correction, pupil tracker and interferential coronagraphs. At its back
end, an Infra-Red Dual-beam Imaging and Spectroscopy science module and an integral field spectrograph work in
the Near Infrared (NIR) Y, J, H and Ks bands (0.95 - 2.32μm) and a high resolution polarization camera covers the
visible (0.6 - 0.9 μm) region. We describe briefly the science goals of the instrument and deduce the top-level
requirements. This paper presents the system architecture, and reviews each of the main sub-systems. The results of the
latest end-to-end simulations are shown and an update of the expected performance is given. The project has been
officially kicked-off in March 2006, it is presently undergoing Preliminary Design Review and is scheduled for 1st
light in early 2011. This paper reviews the present design of SPHERE but focuses on the changes implemented since
this project was presented the last time to this audience.
SPHERE is an instrument designed and built by a consortium of French, German, Italian, Swiss and Dutch institutes in collaboration with ESO. The project is currently in its Phase B. The main goal of SPHERE is to gain at least one order of magnitude with respect to the present VLT AO facility (NACO) in the direct detection of faint objects very close to a bright star, especially giant extrasolar planets. Apart from a high Strehl ratio, the instrument will be designed to reduce the scattered light of the central bright star and subtract the residual speckle halo. Sophisticated post-AO capabilities are needed to provide maximum detectivity and possibly physical data on the putative planets.
The Integral Field Spectrograph (IFS), one of the three scientific channels foreseen in the SPHERE design, is a very low resolution spectrograph (R~20) which works in the near IR (0.95-1.35 μm), an ideal wavelength range for the ground based detection of planetary features. Its goal is to suppress speckle to a contrast of 107, with a goal of 108, and at the same time provide spectral information in a field of view of about 1.5 × 1.5 arcsecs2 in proximity of the target star.
In this paper we describe the overall IFS design concept.
The Planet Finder instrument for ESO's VLT telescope, scheduled for first light in 2010, aims to detect giant extra-solar planets in the vicinity of bright stars and to characterise the objects found through spectroscopic and polarimetric observations. The observations will be done both within the Y, J, H and Ks atmospheric windows (~0.95 - 2.32μm) by the aid of a dual imaging camera (IRDIS) and an integral field spectrograph (IFS), and in the visible using a fast-modulation polarization camera (ZIMPOL). The instrument employs an extreme-AO turbulence compensation system, focal plane tip-tilt correction, and interferential coronagraphs. We describe briefly the science goals of the instrument and deduce the top-level requirements. The system architecture is presented, including brief descriptions of each of the main sub-systems. Expected performance is described in terms of end-to-end simulations, and a semi-analytic performance-estimation tool for system-level sensitivity analysis is presented.
The Exo-Planets Imaging Camera and Spectrograph (EPICS), is the Planet Finder Instrument concept for the European
Extremely Large Telescope (ELT). The study made in the frame of the OWL 100-m telescope concept is being up-dated
in direct relation with the re-baselining activities of the European Extremely Large Telescope.
A new IDL code for simulations of observation made with an Integral Field Spectrograph attached to an adaptive optics system is here presented in detail. It is conceived to support CHEOPS, a high contrast imaging instrument for exo-planets detection. The aim of this sofware is to achieve simulated images and spectra considering realistic values of speckle noise, Adaptive Optics corrections and the specific instrumental features. This code can help us in particular to simulate close binary systems or exo-planetary system, in order to find the limit of detectability of faint objects using simultaneous differential imaging.
We present results from a phase A study supported by ESO for a VLT instrument for the search and investigation of extrasolar planets.
The envisaged CHEOPS (CHaracterizing Extrasolar planets by Opto-infrared Polarization and Spectroscopy) instrument consists of an extreme AO system, a spectroscopic integral field unit and an imaging polarimeter. This paper describes the conceptual design of the imaging polarimeter which is based on the ZIMPOL (Zurich IMaging POLarimeter) technique using a fast polarization modulator combined with a demodulating CCD camera. ZIMPOL is capable of detecting polarization signals on the order of p=0.001% as demonstrated in solar applications. We discuss the planned implementation of ZIMPOL within the CHEOPS instrument, in particular the design of the polarization modulator. Further we describe strategies to minimize the instrumental effects and to enhance the overall measuring efficiency in order to achieve the very demanding science goals.
The Integral Field Spectrograph (IFS) of CHEOPS, the 2nd generation VLT instrument for planet finding, will attain a very low resolution (R=15) in order to search for cold (and warm) planets in stellar neighbourhood. This will allow to exploit wide band integral field spectroscopy to perform differential photometry. The complete description of CHEOPS IFS is given as a separate contribution to this conference; in this paper the analysis and the project of the very low disperser are outlined.
CHEOPS is a 2nd generation VLT instrument for the direct detection of extrasolar planets. The project is currently in its Phase A. It consists of an high order adaptive optics system which provides the necessary Strehl ratio for the differential polarimetric imager (ZIMPOL) and an Integral Field Spectrograph (IFS). The IFS is a very low resolution spectrograph (R~15) which works in the near IR (0.95-1.7 μm), an ideal wavelength range for the ground based detection of planetary features. In our baseline design, the Integral Field Unit (IFU) is a microlens array of about 250x250 elements which will cover a field of view of about 3.5x3.5 arcsecs2 in proximity of the target star. In this paper we describe the instrument, its preliminary optical design and the basic requirements about detectors. In a separate contribution to this conference, we present the very low resolution disperser.
The CHEOPS Planet Finder is one of the proposed second generation instruments for the VLT. Its purpose is to image and characterize giant extrasolar planets in different phases of their evolution: young, warm planets as well as old, cold ones. Imaging the last ones is the most challenging task because of the very large (>108) flux contrast with their star. Detection of such faint sources close to the stars from the ground requires a very high Strehl ratio and efficient suppression of the speckle noise. Two complementary strategies, based on imaging polarimetry using fast modulation and on integral field spectroscopy, are included as scientific channels of CHEOPS, after the high order adaptive optics module. The outputs of the two channels will allow a close insight into the main properties of detected extrasolar planets. In
addition, the CHEOPS instrument is well suited for a number of astrophysical projects, which are briefly described.
We are currently investigating the possibilities for a high-contrast, adaptive optics assisted instrument to be placed as a 2nd-generation instrument on ESO's VLT. This instrument will consist of an 'extreme-ao' system capable of producing very high Strehl ratios, a contrast-enhancing device and two differential imaging detection systems. It will be designed to collect photons directly coming from the surface of substellar companions - ideally down to planetary masses - to bright, nearby stars and disentangle them from the stellar photons. We will present our current design study for such an instrument and
discuss the various ways to tell stellar from companion photons. These ways include the use of polarimetric and/or spectroscopic
information as well as making use of knowledge about photon statistics. Results of our latest simulations regarding the instrument will be presented and the expected performance discussed.
Derived from the simulated performance we will also give details
about the expected science impact of the planet finder. This will
comprise the chances of finding different types of exo-planets -
notably the dilemma of going for hot planets marginally separated
from their parent stars or cold, far-away plamnets delivering very
little radiation, the scientific return of such detections and
follow-up examinations, as well as other topics like star-formation,
debris disks, and planetary nebulae where a high-resolution,
high-contrast system will trigger new break-throughs.
The large Binocular Telescope is currently in the pre- erection phase. The instrument has been already funded and its first-light is expected shortly after that of the LBT. Given the peculiarity of the telescope optics we designed tow prime focus cameras with two five-lens refractive correctors, optimized in the blue-side and red-side of the visible spectrum respectively. This independent coating. Detectors also reflect this choice, being optimized separately. We present the most relevant features of the instrument, the optical design as well as the structural and mechanical layout. Each of the two Prime Focus cameras gather light form a very fast, F/1.14 parabolic primary mirror. The field is corrected over roughly half a degree in size, allowing optical performances in terms of 80 percent of Encircled Energy in better than approximately 0.3 inch. Focal length is slightly increased in order to provide a better sampling using 13.5 micrometers pixel size chips. The CCD array is made up with 4 EEV 42-90 chips, per channel, to obtain an equivalent 6000 by 6000 pixels optimizing the AR coating to the U,B,V and V,R,I,Z bands respectively. The array will be read out in 10 seconds using a 1Meegapixel/second controller with four video channels. The cryostat will use a state of the art dewar to reach an holding time of several days using a limited amount of liquid nitrogen. The whole mechanical design has bene modeled using Finite Elements analysis in order to check for mechanical flexures of the mount tube and of the optical components by themselves. A brief overview of the informative facilities to be provided with the instrument and of a few science case studies that can be attacked by this instrument are also given.
Some preliminary optical designs for three wide field cameras are briefly reported for the space missions Plures and Rosetta. Plures is a proposal to the European Space Agency (ESA) for a wide field telescope able to detect Supernova explosions with a time resolution of the order of a fraction of a minute. After the Supernova detection the telescope should switch to a narrow, single-object mode in order to probe the event in a photometric and spectroscopic mode. Plures should continuously monitor the Virgo cluster with a field of view of the order of 100 squared degrees. Rosetta is a cornerstone mission of ESA for the approaching of a cometary body, after the fly-by with two asteroids. In the approach phase Rosetta should orbit around the comet. Two cameras will map and probe the surface of the comet nucleus. For the three optics all-reflective unobstructed solutions are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.