The fluorescence imaging spectrometer (FLORIS) is the payload of the fluorescence explorer mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar-induced vegetation fluorescence aiming at monitoring photosynthetic activity. FLORIS works in a push-broom configuration, and it is designed to acquire data in the 500 to 780 nm spectral range with a sampling of 0.1 nm in the oxygen bands (759 to 769 nm and 686 to 697 nm) and 0.5 to 2.0 nm in the red edge, chlorophyll absorption, and photochemical reflectance index bands. FLEX will fly in formation with Sentinel-3 to benefit from the measurements made by Sentinel-3 instruments, OLCI, and SLSTR, particularly concerning the cloud screening, the proper characterization of the atmospheric state, and the determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the high resolution (HR) and low resolution (LR) spectrometers. In the frame of the instrument predevelopment, Leonardo Company (Italy) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. OHB System AG (Germany) is in charge of the development of the LR spectrometer. The main objectives of the activity are to anticipate the development of the instrument and provide early risk retirement of the critical components; evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity, and environmental influences; verify the adequacy of critical tests such as spectral characterization and straylight; and define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, we will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.
The recent progress of manufacturing techniques favours this rapid change. For instance, for some applications the possibility to use a spectrometer with a magnification different from one is a key factor to enable instrument designs that are compact, cost effective and with high performance. This can be for instance achieved by using freeform or aspheric mirrors and freeform or spherical gratings. Other compact designs use instead linearly variable filters as dispersive devices, pointing to a different set of applications and performance.
The progress on small satellites and payloads, especially in the vision of large constellations, also benefits from the rapid development of imaging processing and deep learning machines, for instance equipping the payloads with powerful onboard data processor for real time generation of Level 2 data to face the challenge of handling the huge amount of data that is produced on-board.
By combining all these developments, it is possible to produce a portfolio of innovative multi/hyperspectral payloads covering a broad range of applications, spanning from high spatial resolution to large swath width, from minisatellite to cubesat format. Exploiting the flexibility and interoperability of these payloads, the users will be provided with turnkey solutions and real time response to their specific needs.
The European Space Agency is leading several R&D activities in the field of compact multispectral and hyperspectral payloads, fit for small platforms. These activities encompass technology development of novel optical designs, materials and processes, including also engineering of detectors, EEE components and dedicated data processing to achieve innovative and cost-effective solutions.
The paper provides an overview of the technology developments, the status of the instruments manufactured so far and those in operation, their performance and their expected applications. An example of an imaging spectrometer design that is extremely compact, realized with only two spherical optical elements and with a magnification different from one (1:3) is also addressed.
Here we present the software StrayLux, a tool to calculate the diffuse stray-light component of optical instruments. This software uses a semi-analytical approach to approximate stray-light contribution of the optical components of an instrument, resulting in shorter calculation times than Monte-Carlo simulations. The tool is completely written in Python, is provided with a graphical interface, and can interact with Zemax to extract the relevant parameters of an optical design.
The latest version of the software is currently made available to ESA industrial partners as a possible benchmark tool for stray-light estimation, within the instrument pre-development activities for future missions.
Leonardo Avionics & Space System Division is the prime contractor for the FLORIS Instrument for which Media Lario is manufacturing the QM unit of the spherical mirror included in the High-Resolution Spectrometer (HRSPE), hereafter called HRM mirror.
The High-Resolution Mirror is a 250-mm diameter spherical mirror with a radius of curvature of approximately 440 mm. For the mirror substrate, Leonardo has selected the Aluminium alloy AlSi40, a special alloy with 40% Silicon content, coated with a hard polishing layer of Nickel Phosphorus (NiP), deposited by electroless chemical process. The Silicon content allows this special Aluminium alloy to have the same coefficient of thermal expansion (CTE) of the NiP layer, therefore preventing thermal deformations deriving from the bimetallic effect. The mirror structure is light-weighted to approximately 2.8 kg. The required wave-front error of the mirror is better than 0.5 fringes PV, while the surface microroughness has been specified at 0.5 nm RMS due to stringent straylight requirements of the FLORIS instrument.
Media Lario has been selected for the mirror development phase because of their experience in the design and manufacturing of AlSi/NiP mirrors demonstrated in the development of the Earth Observation optical payload for small satellites (called STREEGO), based on an AlSi40 TMA telescope. The manufacturing process includes precision diamond turning, optical figuring and super-polishing. The optical coating will be done by Leonardo at their thin-films facility of Carsoli, Italy. Since the recipe prescribes to pre-heat the mirror surface at 100° C, Media Lario will qualify the mirror substrate with -25/+110°C thermal cycles to ensure adequate thermal stability for the coating process.
The retrieval of the faint fluorescence signal from the acquired vegetation spectra is particularly sensitive to straylight.
As results, the straylight requirements on the FLORIS instrument are especially stringent.
For FLORIS a two-step straylight reduction process has been put in place by the Leonardo-Thales Alenia Space team to achieve this requirement. Careful instrument design and manufacturing are followed by digital processing of the raw instrument data.
In this paper we present the feasibility demonstration of the straylight digital correction process, based on simulation of the dedicated data processing and quantitative assessment of the residuals.
This paper presents a conceptual design of a facility placed in a vacuum chamber to eliminate undesired air particles scatter light sources. The specification of the clean room class or vacuum will depend on the required rejection to be measured. Once the vacuum chamber is closed, the stray light level from the external environment can be considered as negligible. Inside the chamber a dedicated baffle design is required to eliminate undesired light generated by the set up itself e.g. retro reflected light away from the instrument under test. This implies blackened shrouds all around the specimen. The proposed illumination system is a 400 mm off axis parabolic mirror with a focal length of 2 m. The off axis design suppresses the problem of stray light that can be generated by the internal obstruction. A dedicated block source is evaluated in order to avoid any stray light coming from the structure around the source pinhole. Dedicated attention is required on the selection of the source to achieve the required large measurement dynamic.
This telescope configuration had been also selected for the PROBA-V payload, the successor of Vegetation, a multispectral imager flown on Spot-4 and subsequently on Spot-5 French satellites for Earth Observation and defence. PROBA-V, small PROBA-type satellite, will continue acquisition of vegetation data after the lifetime of Spot-5 expires in 2012.
The PROBA-V TMA optical design achieves a 34° FOV across track and makes use of highly aspherical mirrors. Such a telescope had become feasible due to the recently developed Single Point Diamond Turning fabrication technology. The telescope mirrors and structure are fabricated in aluminium and form an athermal optical system.
This paper presents the development of the compact wide FOV TMA, its implementation in PROBA-V multispectral imager and reviews optics fabrication technology that made this development possible. Furthermore, this TMA is being used in combination with a linear variable filter in a breadboard of a compact hyperspectral imager. Moreover, current technology allows miniaturization of TMA, so it is possible to use a TMA-based hyperspectral imager on a cubesat platform.
The lifetime of Spot-5 expires in early 2013, and to ensure the continuity of vegetation data, BELSPO, the Belgian Federal Science Policy Office, supported the development of an instrument that could be flown on a Proba type satellite, a small satellite developed by the Belgian QinetiQ Space (previously known as Verhaert Space).
The challenge of this development is to produce an instrument responding to the same user requirements as Vegetation, but with an overall mass of about 30 kg, while the Vegetation instrument mass is 130 kg. This development had become feasible thanks to a number of new technologies that have been developed since the nineties, when Vegetation was first conceived, namely Single Point Diamond Turning fabrication of aspherical mirrors and efficient VNIR and SWIR detectors.
The Proba-V payload is based on three identical reflective telescopes using highly aspherical mirrors in a TMA (Three Mirrors Anastigmat) configuration. Each telescope covers a field of view of 34° to reach the required swath.
One of the challenges in the development of the PROBA-V instrument is the efficient reduction of stray light. Due to the mass and volume constraints it was not possible to implement a design with an intermediate focus to reduce the stray light. The analysis and minimization of the in-field stray light is an important element of the design because of the large FOV and the surface roughness currently achievable with the Single Point Diamond Turning.
This document presents the preliminary baffle layout designed for the Three Mirrors Anastigmatic (TMA) telescope developed for the Proba-V mission. This baffling is used to avoid 1st order stray light i.e. direct stray light or through reflections on the mirrors. The stray light from the SWIR folding mirror is also studied. After these preliminary analyses the mechanical structure of the TMA is designed then verified in term of vignetting and stray light.
The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions.
The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument.
The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a ‘multi-dimensional’ filtering, simultaneously working on the spectral, spatial and temporal domains.
The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm ± 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms.
This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.
The challenge of this calibration development is to achieve better performance than the item under test using mostly standard items. Because only the subsystem spectrometer needs to be calibrated, the calibration facility needs to simulate the geometrical “behaviours” of the imaging system.
A trade-off study indicates that no commercial devices are able to fulfil completely all the requirements so that it was necessary to opt for an in home telecentric achromatic design. The proposed concept is based on an Offner design. This allows mainly to use simple spherical mirrors and to cover the spectral range. The spectral range is covered with a monochromator. Because of the large number of parameters to record the calibration facility is fully automatized.
The performances of the calibration system have been verified by analysis and experimentally. Results achieved recently on a free-form grating Offner spectrometer demonstrate the capacities of this new calibration facility.
In this paper, a full calibration facility is described, developed specifically for a new free-form spectro-imager.
View contact details