In order to fully exploit emerging 3rd generation infrared detector technology, very high performance signal processing
electronics are required in order to process in real-time, the vast amount of data that can be generated. This paper
describes SELEX Sensors and Airborne System's most recent developments based upon the existing Sensor Integrated
Modular Architecture (SiGMA) thermal imager. The key advances described in this paper include a modular
architecture approach allowing physical separation of the processing core from the detector and proximity electronics,
the miniaturisation of the processing electronics and the introduction of a solid state micro-scan mechanism which
builds upon concepts developed during the company's previous work with uncooled infrared detector technology. The
sensor architecture is initially designed to operate with the SELEX S&AS developed Hawk infrared detector, a medium
waveband 640*512 element CMT array on a 16 micron pitch, but will also be compatible with the emerging Albion
detector arrays, a medium waveband 1024*768 element CMT array on a 16 micron pitch and a long waveband 640*512
element CMT array on a 24 micron pitch. Other areas described are the development of advanced image processing
algorithms including non-linear correction for display optimisation.
The first generation of high performance thermal imaging sensors in the UK was based on two axis opto-mechanical
scanning systems and small (4-16 element) arrays of the SPRITE detector, developed during the 1970s. Almost two
decades later, a 2nd Generation system, STAIRS C was introduced, based on single axis scanning and a long linear
array of approximately 3000 elements. The UK has now begun the industrialisation of 3rd Generation High Performance
Thermal Imaging under a programme known as "Albion". Three new high performance cadmium mercury telluride
arrays are being manufactured. The CMT material is grown by MOVPE on low cost substrates and bump bonded to the
silicon read out circuit (ROIC). To maintain low production costs, all three detectors are designed to fit with existing
standard Integrated Detector Cooling Assemblies (IDCAs). The two largest focal planes are conventional devices
operating in the MWIR and LWIR spectral bands. A smaller format LWIR device is also described which has a smart
ROIC, enabling much longer stare times than are feasible with conventional pixel circuits, thus achieving very high
sensitivity. A new reference surface technology for thermal imaging sensors is described, based on Negative
Luminescence (NL), which offers several advantages over conventional peltier references, improving the quality of the
Non-Uniformity Correction (NUC) algorithms.
The first generation of high performance thermal imaging sensors in the UK was based on two axis opto-mechanical scanning systems and small (4-16 element) arrays of the SPRITE detector, developed during the 1970s. Almost two decades later, a 2nd Generation system, STAIRS C was introduced, based on single axis scanning and a long linear array of approximately 3000 elements. This paper addresses the development of the UK's 3rd Generation High Performance Thermal Imaging sensor systems, under a programme known as "Albion". Three new high performance detectors, manufactured in cadmium mercury telluride, operating in both MWIR and LWIR, providing high resolution and sensitivities without need for opto-mechanical scanning systems will be described. The CMT material is grown by MOVPE on low cost substrates and bump bonded to the silicon read out circuit (ROIC). All three detectors are designed to fit with existing standard Integrated Detector Cooling Assemblies (IDCAs). The two largest detectors will be integrated with field demonstrator cameras providing MWIR and LWIR solutions that can rapidly be tailored to specific military requirements. The remaining detector will be a LWIR device with a smart ROIC, facilitating integration times much longer than can typically be achieved with focal plane arrays and consequently yield very high thermal sensitivity. This device will be demonstrated in a lab based camera system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.