Optical square waves (SWs) have been extensively investigated in semiconductor laser diodes (LDs) like VCSELs or EELs under optical feedback and/or optical injection. In this abstract, we discuss optical SW generation in a delay-driven optoelectronic (OE) feedback system. We have found that at high J, the SWs originate from the same branches of the dynamical regime as the gain-switched pulsing found close to the injection threshold (J_th) of a positive optoelectronic feedback system. A single-mode DFB multi-quantum-well (MQW) InGaAsP LD (3SP Technologies-1953LCV1) with J_th of 20 mA is used for this experiment. The origin of the feedback signal is the photodetector output, which is appropriately boosted in the amplifiers/attenuator cascade before feeding it to the radio frequency input arm of the Bias Tee. An oscilloscope measures the optical intensity after the PD. The delay in the feedback loop is τ=10.64 ns. The first appearance of the SW for this particular configuration is recorded at 48.20 mA. The SW appears with a repetition rate of f_τ=τ^(-1)=(10.64 ns)^(-1)=94 MHz. The optical spectrum shows two peaks separated by a frequency related to the duty cycle of the SWs. At higher feedback delay, the SWs appear at harmonics of the fundamental delay frequency. Theoretical analysis based on a delay-differential model and accounting for the multilevel amplification, multistage filtering, and saturable nonlinearity attributes the origin of the SWs to the same branches of dynamical regimes as those observed for the gain-switched pulse-train generation near the J_th and confirms the experimental observation of SW harmonics for higher feedback delays. In conclusion, we experimentally demonstrate SWG in a laser diode subjected to OE delayed feedback on its injection current.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.