Grätzel solar cells are reported in a transparent conducting oxide-less (TCO-less) back-contact dye-sensitized solar cell (BC-DSC) architecture using a stainless steel mesh-protected working electrode along with nanoporous TiO2 semiconductor and metal-free D205 dye. Liquid electrolytes play a significant role for the dye regeneration in the working operation of TCO-less BC-DSCs; therefore, we report the effectiveness of two different commonly utilized electrolytes (iodine- and cobalt-based redox shuttles) for the construction and performance of TCO-less dye-sensitized solar cells (DSCs). Differential performance of DSCs thus fabricated was interpreted utilizing impedance spectral and lifetime analysis. It was found that although utilization of cobalt bipyridyl complex-based electrolyte was able to harvest higher photons in the lower wavelength region (330 to 430 nm) as compared to its iodine electrolyte counterparts, hampered dye regeneration due to reduced driving force and slower ion diffusion in combination with higher charge transport resistance at TiO2 / dye / electrolyte was responsible for relatively hampered photovoltaic performance at peak absorption.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.