MicroPhotonic broadband RF signal processors utilize the capability of photons to perform true-time delay processing at very low loss that is unattainable by conventional electronic methods. In this paper, we present a novel MicroPhotonic interference mitigation filter architecture that utilises a CMOS Si photoreceiver/VCSEL array in conjunction with a true-time-delay multi-cavity optical substrate to realise an adaptive transversal RF processor with arbitrary response. Results show that the proposed MicroPhotonic structure can synthesize adaptive interference mitigation with a shape factor (ratio of the -40dB bandwidth to the -3dB bandwidth) as low as 2 and passband ripples less than 0.25dB.
A novel tunable optical filter structure based on an Opto-VLSI processor is proposed in this paper. The architecture is capable of dynamically tuning multiple pass-bands through reconfiguration of the size and shape of holographic diffractive gratings generated by the Opto-VLSI processor. Results for an experimental 3-passband tunable filter are presented confirming over 25dB of dynamic range and passband bandwidth of 2 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.