Since the mid-1960s when Kumar Patel invented the 9-10μm CO2 laser and the 5μm CO laser, the CO2 laser has experienced tremendous commercial success, while the CO laser has essentially played no role. Until recently, reliable, cost effective, room temperature, long sealed-off lifetime CO laser sources didn’t exist. With the product release of Coherent’s CO laser family, CO lasers are now commercially available with similar performance to CO2 lasers.
Because certain materials have different absorption coefficients at 5μm and 9-10μm, there is a light-material interaction that is wavelength dependent. In addition, the 5μm beam can be focused to a tighter spot size and for the same spot size, it has a longer depth of focus than at 10μm. This finds relevance in the processing of glass and ceramics where 10μm radiation is absorbed near the surface, but 5μm radiation is deposited into the bulk material and does not rely solely on diffusion from the surface. Leveraging this difference, Coherent and other organizations have conducted experiments comparing CO2 and CO laser processing of glasses and ceramics. Results show that the CO laser provides processing and performance advantages in this important materials processing market.
In this paper, we present the performance characteristics of commercially available CO lasers compared to the equivalent CO2 laser. Application test results include: straight and curved cutting of various glasses, hole drilling, ceramic scribing, and the emerging area of 3-D glass printing. Both successes and remaining challenges are discussed.
The effects of positive nitrogen pressure (0psi to 10psi above ambient) on the reflection spectrum of holographic polymer dispersed liquid crystal (H-PDLC) Bragg gratings has been experimentally analyzed showing shifts in Bragg wavelength and peak broadening effects. We have observed a spectral blue-shift in the peak reflection wavelength that occurs with increasing pressure. Using statistical analysis techniques, we have shown that this is a real effect that can be quantified. The spectral dependence on applied pressure is explained by mechanical deformations to the polymer network, which is assumed to behave linearly. These devices have potential usage as optical pressure sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.