The Matter in Extreme Conditions Upgrade (MEC-U) project is a major upgrade to the MEC instrument of the LINAC Coherent Light Source (LCLS) X-ray free electron laser (XFEL) user facility at SLAC National Accelerator Laboratory. The envisioned MEC upgrade will significantly enhance the capabilities of the pump laser sources in current MEC experimental station, boosting the energy of the nanosecond shock driver from 100 J to the kJ level, and increasing the power and repetition rate of the short pulse laser from 25 TW at 5 Hz to 1 PW at 10 Hz rate. Building such high energy/power pump laser systems presents challenges to minimize and mitigate against laser-induced optical damage. As part of the system design, we have identified the optics at high-risk to damage and we have designed the laser systems to mitigate against these damage risks to ensure sustained facility operation.
The generation of optical pulses with parabolic time intensity profiles is experimentally demonstrated. A Mode Locked Laser
(MLL) that generates near transform limited pulses with a gaussian optical spectrum are temporally stretched using a linearly
chirped fiber Bragg grating. The temporal intensity profile of the stretched pulses matches the optical spectrum of the laser
due to frequency-to-time mapping. An amplitude modulator is driven by a carefully designed voltage signal to result in
parabolic pulses. Experimental results of pulse shaping with a MLL input source are presented, and show good agreement
with modeling results. Parabolic pulse generation using a CW laser source is also demonstrated and a deviation of less than
3% from an ideal parabola is observed.
Ultrashort pulse lasers based on fiber optic architecture will play a dominant role in the spread of these lasers into research and industrial applications. The principle challenge is to generate adequate pulse energy from singlemode or quasi-singlemode amplifiers which have small cross-sectional area. We demonstrate a robust, all-fiber erbium amplifier system that produces >100 μJ per pulse with 701 fs pulsewidth and M2 < 1.3. We will discuss the salient amplifier dynamics that influence the pulse generation, shaping, and propagation phenomena in state-of-the-art erbium fiber lasers. Furthermore, we show data relevant to applications and implementation of ultrashort pulse lasers.
Liquid-crystal-on-silicon (LCOS) technology enables affordable,
true high definition resolution televisions for the growing rear
projection display market. In this review, we will present a
taxonomy of LCOS optical architectures and survey some recent
advances in LCOS panels and the optical systems that support them.
We have conducted an extensive series of laser damage measurements on highly reflective (HR) dielectric coatings which have yielded 1064-nm thresholds as high as 40 J/cm for 8- to 10-ns pulses at pulse-repetition frequencies (PRF) of 10 Hz. Moreover by laser conditioning these coatings with subthreshold pulses the thresholds of some coatings were raised to levels exceeding 70 J/cm. These are the highest threshold dielectric HR coatings that we have tested in this regime. The coatings were originally developed to produce HR-overcoated metal mirrors for free-electronlaser (EEL) app1icationsat high PRF. Our tests included coatings deposited on both dielectric substrates and molybdenum (Mo) substrates. In each category we also examined coatings with a pre-coat of Mo between the substrate and the HR stack. The improved dielectric HR stacks effectively shielded the Mo from the laser irradiation so that the thresholds of virtually all Mo samples exceeded levels of the best dielectric-enhanced and dielectric-HR-coated metal mirrors we have tested to date. In addition to the low PRF measurements we also conducted 1064-nm damage tests at 6-kHz PRF using 65-ns pulses from the Kilroy damage test facility. The coatings survived thermal loading of fluences ranging from 2 to 10 J/cm2 with respective small spot sizes on the order of 1 . 2 to 0. 3 mm (1 /e? diameter). 1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.