Fluorescence lifetime detection is widely used in molecular biology to monitor many cell parameters (such as pH, ion
concentrations, etc.) and for an early diagnosis of many pathologies. In a typical fluorescence lifetime experiment a
pulsed laser is used to excite the fluorescent dyes and the emitted light is revealed by means of high sensitivity detectors,
typically: intensified CCD, PMTs or Single-Photon Avalanche Diodes (SPADs).In this contribute we present a SPAD
detector module fabricated in a 0.35μm High Voltage CMOS technology to be used within a lab-on-chip system
consisting of a micro-reactor array for bioaffinity assays based on fluorescence markers. The detector module, having a
total area of 600 x 900 μm2, can be arranged to build a small pixel array to be directly coupled to the micro-reactors. No
emission filters are needed, since the ultra-short laser pulse is cut off in the time domain. The module consists of a
10x10-SPAD array, where each SPAD cell is equipped with dedicated active quenching and recharging circuit. Each cell
has a pitch of 26μm with a fill factor of 48%. The SPADs have been binned in order to realize a large photosensitive area
detector exhibiting a reasonably low dark count rate (DCR) and reduced dead time, as required in a fast measurement
system. A memory has also been implemented in order to enable only low DCR SPADs, so that a total DCR of about
100kHz can be achieved for the whole photosensitive area. The digital output generated by the SPAD array is sent to a
time-discriminator stage which allows a time-gated detection of the incident light. Two time-windows have been
implemented in this architecture. Their time width is controlled by an on-chip digital PLL locked to the external laser
clock whereas the width of the time-windows can be set within the range 500ps-10ns with a resolution of 500ps. Photons
detected within each time window are then counted by two 10-bits digital counters. Time-interleaved operation has been
implemented to read out the pixel data in parallel with the photon detection phase.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.