Myocardial perfusion Magnetic Resonance (MR) imaging has proven to be a powerful method to assess coronary artery diseases. The current work presents a novel approach to the analysis of registered sequences of myocardial perfusion MR images. A previously reported active appearance model (AAM) based segmentation and registration of the myocardium provided pixel-wise signal intensity curves that were analyzed using the Support Vector Domain Description (SVDD). In contrast to normal SVDD, the entire regularization path was calculated and used to calculate a generalized distance, which is used to discriminate between ischemic and healthy tissue. The results corresponded well to the ischemic segments found by assessment of the three common perfusion parameters; maximum upslope, peak and time-to-peak obtained pixel-wise.
Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download.
The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.
Little work has been done on comparing the performance of statistical model-based approaches and nonrigid registration algorithms. This paper deals with the qualitative and quantitative comparison of active appearance models (AAMs) and a nonrigid registration algorithm based on free-form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi-slice myocardial perfusion images. The images are acquired by magnetic resonance imaging, from infarct patients. A registration of these sequences is crucial for clinical practice, which currently is subjected to manual labor. In the paper, the pros and cons of the two registration approaches are discussed and qualitative and quantitative comparisons are provided. The quantitative comparison is obtained by an analysis of variance of landmark errors, i.e. point to point and point to curve errors. Even though the FFD-based approach does not include a training phase it gave similar accuracy as the AAMs in terms of point to point errors. For the point to curve errors the AAMs provided higher accuracy. In both cases AAMs gave higher precision due to the training procedure.
In the past decade, statistical shape modeling has been widely popularized in the medical image analysis community. Predominantly, principal component analysis (PCA) has been employed to model biological shape variability. Here, a reparameterization with orthogonal basis vectors is obtained such that the variance of the input data is maximized. This property drives models toward global shape deformations and has been highly successful in fitting shape models to new images. However, recent literature has indicated that this uncorrelated basis may be suboptimal for exploratory analyses and disease characterization. This paper explores the orthomax class of statistical methods for transforming variable loadings into a simple structure which is more easily interpreted by favoring sparsity. Further, we introduce these transformations into a particular framework traditionally based on PCA; the Active Appearance Models (AAMs). We note that the orthomax transformations are independent of domain dimensionality (2D/3D etc.) and spatial structure. Decompositions of both shape and texture models are carried out. Further, the issue of component ordering is treated by establishing a set of relevant criteria. Experimental results are given on chest radiographs, magnetic resonance images of the brain, and face images. Since pathologies are typically spatially localized, either with respect to shape or texture, we anticipate many medical applications where sparse parameterizations are preferable to the conventional global PCA approach.
KEYWORDS: 3D modeling, Magnetic resonance imaging, Data modeling, Blood, Mathematical modeling, 3D image processing, Image processing, Modeling, Principal component analysis, Shape analysis
Rapid and unsupervised quantitative analysis is of utmost importance to ensure clinical acceptance of many examinations using cardiac magnetic resonance imaging (MRI). We present a framework that aims at fulfilling these goals for the application of left ventricular ejection fraction estimation in four-dimensional MRI. The theoretical foundation of our work is the generative two-dimensional Active Appearance Models by Cootes et al., here extended to bi-temporal, three-dimensional models. Further issues treated include correction of respiratory induced slice displacements, systole detection, and a texture model pruning strategy. Cross-validation carried out on clinical-quality scans of twelve volunteers indicates that ejection fraction and cardiac blood pool volumes can be estimated automatically and rapidly with accuracy on par with typical inter-observer variability.
This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres.
This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter convergence limits and a maximum likelihood estimate of shape and pose. Further, the important problem of modelling object neighbourhood is addressed. Finally, we describe how correspondence across images is achieved by selecting the minimum description length (MDL) landmarks from a set of training boundaries using the recently proposed method of Davies et al. This MDL-approach ensures a unique parameterisation of corpus callosum contour variation, which is crucial for neurological studies that compare reference areas such as rostrum, splenium, et cetera. We present quantitative and qualitative results that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.
KEYWORDS: Wavelets, Image segmentation, 3D modeling, Modeling, Image compression, Principal component analysis, 3D image processing, Linear filtering, RGB color model, Medical imaging
Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage and computational requirements. This paper extends the previous work of Wolstenholme and Taylor where Haar wavelet coefficient subsets were modelled rather than pixel intensities. In addition to a detailed review of the method and a discussion of the integration into an AAM-framework, we demonstrate that the more recent bi-orthogonal CDF 9-7 wavelet offers advantages over the traditional Haar wavelet in terms of synthesis quality and accuracy. Further, we demonstrate that the inherent frequency separation in wavelets allows for simple band-pass filtering, e.g. edge-emphasis. Experiments using Haar and CDF 9-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme offered both a decrease in complexity and an increase in segmentation accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.