Black silicon induced junction photodiodes have nearly ideal responsivity across a wide range of wavelengths between 175-1100 nm, with external quantum efficiency over 99 % at visible wavelengths, when a single spot is measured using light beam between 1 to 2mm in diameter. The spatial uniformity of responsivity is also an important characteristic of a high-quality photodiode, when considering its usage as a reference in photometry. We study here the spatial uniformity of responsivity of large area (8mmx8mm) black silicon photodiodes at 405 nm wavelength. Our results show that the spatial non-uniformity is less than 0.5 % over 90 % of the surface area, and thus the photodiodes meet the thigh criteria typically set for reference standards and are hence suitable for such application.
Black silicon induced junction photodiodes have been shown to have nearly ideal responsivity across a wide range of wavelengths. Another important characteristic of a high-quality photodiode is rise time which can be used to approximate bandwidth of the photodiode. We show experimentally that the rise time of black silicon photodiodes is shorter than in planar photodiodes when alumina layer with similar charge is used to make an induced junction in both. Additionally, we show that the rise time can be rather well approximated using an analytical equation, which combines Elmore delay from equivalent circuit with standard RC-delay arising from series and load resistances.
We have studied how high-energy electron irradiation (12 MeV, total dose 66 krad(Si)) and long term humidity exposure (75%, 75 ˚C, 500 hours) influence the induced junction black silicon or planar photodiode characteristics. In our case, the induced junction is formed using n-type silicon and atomic-layer deposited aluminum oxide (Al2O3), which contains a large negative fixed charge. We compare the results with corresponding planar pn-junction detectors passivated with either with silicon dioxide (SiO2) or Al2O3. The results show that the induced junction detectors remain stable as their responsivity remains nearly unaffected during the electron beam irradiation. On the other hand, the SiO2 passivated counterparts that included conventional pn-junction degrade heavily, which is seen as strongly reduced UV response. Similarly, after humidity test the response of the induced junction detector remains unaffected, while the pn-junction detectors passivated with SiO2 degrade significantly, for instance, the response at 200 nm reduces to 50% from the original value. Interestingly, the pn-junction detectors passivated with Al2O3 exhibit no degradation of UV response, indicating that the surface passivation properties of Al2O3 are more stable than SiO2 under the studied conditions. This phenomenon is further confirmed with PC1D simulations suggesting that the UV degradation results from increased surface recombination velocity. To conclude, the results presented here suggest that black silicon photodiodes containing Al2O3-based induced junction are highly promising alternatives for applications that require the best performance and long-term stability under ionizing and humid conditions.
A high-quality photodiode has high signal-to-noise ratio (SNR), which is ultimately defined by the responsivity and dark current of the photodiode. Black silicon induced junction photodiodes have been shown to have nearly ideal responsivity across a wide range of wavelengths between 175-1100 nm at room temperature (RT). Here we present their spectral responsivity stability and dark current at different temperatures. Both quantities show temperature dependencies similar to conventional pn-junction photodiodes, proving that black silicon photodiodes maintain their improved SNR also at temperatures other than RT.
There is an increasing demand for highly sensitive near infrared (NIR) detectors due to many rapidly growing application areas, such as LiDAR and optical communications. Despite the limited NIR absorption, silicon is a common substrate material in NIR detectors due to low cost and maturity of the technology. To boost the NIR performance of silicon devices, one option is texturizing the front and/or back surface to reduce reflectance and extend the optical path by scattering. Here we demonstrate silicon photodiodes with nanostructured front surface (i.e. black silicon fabricated with reactive ion etching (RIE) that exhibit significantly enhanced external quantum efficiency (EQE) at NIR wavelengths compared to typical state-of-the-art silicon photodiodes. The detectors exhibit over 90% EQE with wavelengths up to 1040 nm and above 60% at 1100 nm. Identical detectors with a planar surface are also investigated revealing that the enhancement from black silicon effectively corresponds to increasing the substrate thickness up to 43% at 1100 nm depending on the thickness of the active layer and back surface structure. This confirms that in addition to reduced reflectance, scattering of transmitted light induced by black silicon plays a key role in the EQE enhancement which benefits especially devices such as backside illuminated photodetectors where very thin substrates are required. We also demonstrate that the high EQE of the black silicon detectors is maintained at incidence angles up to 60 degrees allowing excellent performance in applications where the light is not always perpendicular.
Commercial photodiodes suffer from reflection losses and different recombination losses that reduce the collection efficiency. Recently, we realized a near-ideal silicon photodiode that exhibits an external quantum efficiency above 95% over the wavelength range of 235 – 980 nm, exceeds 100% below 300nm, and provides a very high response at incident angles of up to 70 degrees. The high quantum efficiency is reached by 1) virtually eliminating front surface reflectance by forming a “black silicon” nanostructured surface having dimensions proportional to the wavelength of light to be detected and 2) using an induced junction for signal collection instead of a conventional doped p-n junction, virtually eliminating Auger recombination at the light entry surface. This recombination prevention is especially important in ultraviolet detection since ultraviolet photons are absorbed very close to device surface, where conventional photodiodes have high doping concentration causing loss of signal, but induced junction diode is able to collect virtually all charge carriers generated. In this paper, we analyse the performance of our photodiodes under ultraviolet radiation.
Commercial photodiodes suffer from reflection losses and different recombination losses that reduce the collection efficiency of photogenerated charge carriers. Recently, we realized a near-ideal silicon photodiode, which steps closer to the physical performance limits of silicon photodiodes than any other silicon photodiode realized before. Our device exhibits an external quantum efficiency above 95% over the wavelength range of 235 – 980 nm, and provides a very high response at incident angles of up to 70 degrees. The high quantum efficiency is reached by 1) virtually eliminating front surface reflectance by forming a “black silicon” nanostructured surface having dimensions in the range of wavelength of optical light and 2) using an induced junction for signal collection, formed by negatively charged alumina, instead of a conventional doped p-n junction. Here, we describe the latest efforts in further development of the photodiode technology. In particular, we report improvements both in the short wavelength response via better control of the surface quality, and superior response to photons with energies close to the silicon bandgap.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.