A compact cascaded tunable distributed Bragg reflection (DBR) semiconductor laser is proposed and simulated. Each laser section (LS) is formed by two passive adjacent grating sections (GSs) with slightly different Bragg wavelengths and an active section (AS) between them. A step-wise grating period profile is designed to realize wide range lasing. Since two LSs share a common GS, the total cavity length of the tunable laser is significantly reduced. As an example, a tunable laser with four GSs and three ASs was designed and analyzed, resulting in a continuous tuning range of 13.2 nm. Furthermore, an improved structure with apodized grating in each GS is proposed for good single mode property. The single mode stability and fabrication tolerance are significantly improved. Particularly, this structure based lasers has a fast switching speed of about 5ns. The proposed structure would benefit the practical applications to the low cost tunable lasers in wavelength division multiplexing (WDM) systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.