KEYWORDS: Detection theory, Optical filters, Signal generators, Signal processing, Radio propagation, Radio over Fiber, Radio optics, Modulators, Modulation, Telecommunications
In order to generate a stable and pure 60GHz millimeter-wave signal, a periodically wavelength-swept lightwave signal over a limited wavelength range which center wavelength at 1310nm and frequency-swept rate up to 1GHz is an important component of the whole system. In this paper, we focus on three methods to yield the wanted periodically wavelength-swept lightwave signal, which are sinusoidal wavelength scan, triangular wavelength scan and saw-toothed wavelength scan. We analyze in theory the power characteristics and the spectrum characteristics of the 60GHz millimeter-wave signals relative to the different wavelength-swept lightwave signal generated by different wavelength-swept methods. Furthermore, we simulate the 60GHz radio-over-fiber transmission systems respectively with the three wavelength sweep methods and gain the results in agreement with the analysis in theory.
Our researches are based on such a system architecture that is intended to utilize the good characteristic of the interaction between millimeter-wave and lightwave to implement the 60GHz short millimeter-wave broadband wireless access system over fiber links. The networks include fiber optic links between the center stations (CS) and the base stations (BSs) and millimeter-wave air channel between the BSs and the networks terminals. The polymer optical fiber (POF) is deployed as optical fiber link medium due to its marked competitiveness in short haul, large capability communication systems. In this paper, we focus on suppressing dispersion of the radio-over-fiber transmission system. The POF is a dominant fiber chromatic dispersion source, which behaves multi-mode properties and produces inter-mode dispersion to heavily cause the POF bandwidth degradation. We present analysis on modal dispersion characteristics of 60 GHz short millimeter-wave broadband wireless access system over polymer optical fiber (POF) transmission link and present our scheme, which chooses proper launch condition to control the number of low-order modes and high-order modes excited in the POF link to improve system dispersion characteristic.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.