Commissioning results, on-sky performance and first operations of the Javalambre Panoramic Camera (JPCam) are presented in this paper. JPCam is a 1.2 Gpixel camera deployed on the 2.6m, large field-of-vie Javalambre Survey Telescope (JST250) at the Observatorio Astrof´ısico de Javalambre. JPCam has been conceived to perform J-PAS, a photometric survey of several thousand square degrees of the northern sky in 56 optical bands, 54 of them narrow-band filters (145 ˚A FWHM), contiguous and equi-spaced between 370 and 920nm, producing a low resolution photo-spectrum of every pixel of the observed sky, hence promising crucial breakthroughs in Cosmology and galaxy formation and evolution. JPCam has been designed to maximize field-of-view and wavelength coverage while guaranteeing a high image quality over the entire focal plane. To this aim, JPCam is equipped with a mosaic of 14 9.2k x 9.2k, 10µm pixel, low noise detectors from Teledyne-E2V, providing a FoV of 4.1 square degrees with a plate scale of 0.2267′′/pix. In full frame mode, camera electronics allows read times of 10.9s at 633kHz read frequency (16.4s at 400kHz) with a readout noise of 5.5e− (4.3e−). Its filter unit admits 5 filter trays, each mounting 14 filters corresponding to the 14 CCDs of the mosaic and allowing all the J-PAS filters to be permanently installed. To fully optimize image quality, position of JST250 secondary mirror and JPCam focal plane are maintained optically aligned by means of two hexapod systems. To perform this task, JPCam includes 12 auxiliary detectors, 4 for autoguiding and 8 for image quality control through wavefront sensing.
KEYWORDS: Observatories, Control systems, Telescopes, Astronomy, Buildings, Control systems design, Systems modeling, Telecommunications, System integration, Optical filters
The Observatorio Astrofísico de Javalambre (OAJ†1 ) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS†2 and J-PLUS†3 , each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.