The ARIEL InfraRed Spectrometer (AIRS) instrument will be implemented on board of the ARIEL (Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey) space mission led by ESA, to study the atmosphere of exoplanets by providing low resolution spectrum of the observed targets over broad infrared wavelength range covering the [1,95-7,8] μm. The satellite will be launched by ARIANE 6 from Kourou in 2029 for a 4 years mission. AIRS is equipped with two integrated Focal Plane Assemblies (iFPA) each resulting of the assembly of two subsystem: the Focal Plane Array (FPA) and the Cold Front-End Electronic (CFEE). Each FPA is equipped with a detector H1RG from Teledyne whose cut-off wavelength had been tuned to fit the wavelength domain of interest. The CFEE is connected by a flex cable to the detector package and passively cooled between around 60K through the AIRS optical benches and the Optical Bench of the ARIEL payload. Two different structural models and four bread board models have been developed to validate and qualify the thermal and mechanical design and to validate the full electrical functional detection chain. The paper will describe all these models and the results obtained during the qualification campaign and the performance tests of the first iFPA model equipped with an eight micrometers cut-off detector. This paper describes also the dedicated cryostat and test benches developed, with associated safety, to check compliance with mission requirement at subsystem level.
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission adopted in November 2020 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4-year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over 1000 exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are exoplanets made of? How do planets and planetary systems form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering 1.95-3.90 µm (CH0) and 3.90-7.80 µm (CH1) wavelength ranges with prism-based dispersive elements producing spectra of low resolutions R>100 in CH0 and R>30 in CH1 on two independent detectors. The spectrometer is designed to provide a Nyquist-sampled spectrum in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermo-mechanical design of the instrument functioning in a 60 K environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled to below 42 K. This overview will present updated information of phase C studies, in particular on the assembly and testing of prototypes that are highly representative of the future engineering model that will be used as an instrument-level qualification model.
In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. After an extensive phase of definition and study over 4 years made at CEA on the thermo-mechanical architecture of that Focal Plane, the first model (Structural and Thermal Model) has been assembled qualified and delivered to MSSL in June 2017.
The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150K) connected to their front end electronics (operated at 280K). This Focal Plane will be the largest focal plane (~0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the Teledyne e2v company under ESA contract, front end electronics is studied and provided by MSSL.
The Structural and Thermal Model is fully representative of the Flight Model regarding the thermo-mechanical architecture. As the instrument development philosophy follows a Proto Flight approach this choice has been made very early in the development program in order to reduce the risk on the PFM program. So the AIT/AIV plan has been built in order to fully validate since the STM program the overall integration, verification and qualification sequences, taking into account the very stringent cleanliness requirement. The STM FPA integrates 36 CCDs representative of the flight model except for the detection function. Electrical configuration of the front end electronics provides electrical interface in order to power the CCDs and check integrity of all the electrical links to CCDs.
In this paper we first recall the architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally leading to a SiC structure. The modular architecture concept, considered as a key driver for such big and complex focal plane is detailed. Parallel to that, the integration workflow including verification steps is fully depicted including specific aspects linked to the use of SiC. Validation and qualification test program is described. A summary of geometrical measurements, thermal balance tests and vibrations tests including the main Ground Support Equipment description are reported.
Keyword list: Euclid, CCD, SiC, focal plane, architecture, integration
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.