We demonstrate the broadband visible luminescence from bulk crystalline silicon and silicon nanoparticles sized 100- 30 nm under near-infrared excitation. We show that the luminescence spectrum has two distinct peaks. The first being centered at 550 nm while the second appears close to the wavelength of the second harmonic of the excitation light. The appearance of the second peak is a signature of the highly athermal electron distribution never observed previously. The luminescence intensity and spectral shape strongly depend on the doping type and concentration. Despite being nonresonant, silicon nanoparticles enhance luminescence intensity when placed atop the silicon wafer. The observed phenomenon can be used for wafer inspection and defect detection, as well as for the creation of novel nanosources of light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.