The outbreak of the coronavirus and its rapid spread was recently acknowledged as a worldwide pandemic. Chest CT scans show high potential for detecting pathological manifestations. Hence, the demand for computer-aided tools to support radiologists has grown exponentially. In this work, we developed a deep learning based algorithm, with an emphasis on novel transfer learning methods, to segment COVID-19 opacity in chest CT scans. Our method focuses on creating a deep encoder for feature extraction by using a Fully Convolutional Network (FCN) architecture with one shared encoder and N task-related decoders, named HydraNet. The HydraNet architecture allowed the leverage of a large variety of medical datasets from different domains, in order to achieve better performances on a limited dataset. We achieved a dice score, sensitivity, and precision of 0.724, 0.75, and 0.807 respectively, on the test set, which is competitive with known state-of-the-art results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.