Due to the high-index contrast between the silicon core and silica cladding, the silicon waveguide allows strong optical
confinement and large effective nonlinearity, which facilitates low cost chip scale demonstration of all-optical nonlinear
functional devices at relatively low pump powers. One of the challenges in ultrafast science is the full characterization of
optical pulses in real time. The time-wavelength mapping is proven to be a powerful technique for real time
characterization of fast analog signals. Here we demonstrated a technique based on the cross-phase modulation (XPM)
between the short pulse and the chirped supercontinuum (SC) pulse in the silicon chip to map fast varying optical signals
into spectral domain. In the experiment, when 30 nm linearly chirped supercontinuum pulses generated in a 5 km
dispersion-shifted fiber at the normal regime and 2.4 ps pulse are launched into a 1.7 cm silicon chip with 5 μm2 modal
area, a time-wavelength mapped pattern of the short pulses is observed on the optical spectrum analyzer. From the
measured spectral mapping the actual 2.4ps temporal pulse profile is reconstructed in a computer. This phenomenon can
be extended to full characterization of amplitude and phase information of short pulses. Due to time wavelength
mapping this approach can also be used in real time amplitude and phase measurement of ultrafast optical signals with
arbitrary temporal width. The high nonlinearity and negligible distortions due to walk off make silicon an ideal candidate
for XPM based measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.