Time-resolved photoluminescence (TRPL) is used to study the minority carrier lifetime in type-II superlattice (T2SL) infrared detector materials to investigate the recombination mechanisms, trap states and transport properties that currently limit their performance. Measurements of carrier lifetime have shown that InAs/Ga1-xInxSb T2SLs are dominated by non-radiative Shockley-Read-Hall (SRH) recombination, resulting in short minority carrier lifetimes (10’s of nanoseconds at 77 K). A trap energy of ~60 meV above the valence band is identified in mid-wavelength infrared n-type InAs/Ga1-xInxSb T2SLs, where trap saturation (non-exponential decay) is observed under high injection levels due to a significantly faster hole capture rate than electron capture rate. Lifetime measurements in “Ga-free” InAs/InAs1-xSbx T2SLs exhibit an order-of-magnitude increase in lifetime (100’s of nanoseconds at 77 K) with contributions from both radiative and non-radiative recombination. This improvement is attributed to the reduction of non-radiative recombination centers from the superlattice with the elimination of Ga and suggests that the SRH trap(s) limiting the carrier lifetime of InAs/Ga1-xInxSb T2SLs is native to the Ga1-xInxSb layer. Additionally, radiative recombination is observed in an InAs/GaSb T2SL using a sub-bandgap CW laser to saturate the SRH recombination centers, yielding a radiative lifetime of ~140 ns at 77 K. Since carrier transport is a concern in Ga-free T2SLs, it is investigated by studying samples grown with and without barriers (to contain injected carriers to the absorber region). It is determined that carrier transport is poor in InAs/InAs1-xSbx T2SLs because negligible differences are observed in the carrier lifetime.
Temperature-dependent minority carrier lifetimes of InAs/InAs1-xSbx type-II superlattices are presented. The longest lifetime at 11 K is 504 ± 40 ns and at 77 K is 412 ± 25 ns. Samples with long periods and small wave function overlaps have both non-radiative and radiative recombination mechanisms apparent, with comparable contributions from both near 77 K, and radiative recombination dominating at low temperatures. Samples with short periods and large wave function overlaps have radiative recombination dominating from 10 K until ~200 K. The improved lifetimes observed will enable long minority carrier lifetime superlattices to be designed for high quantum efficiency, low dark current infrared detectors.
Photoelectrochemical cells are devices that can convert solar radiation to hydrogen gas through a water decomposition
process. In this process, energy is converted from incident photons to the bonds of the generated H2 molecules. The solar
radiation absorption, electron-hole pair splitting, and photoelectrolysis half reactions all occur in the vicinity of the
electrode-electrolyte interface. As a result, engineering the electrode material and its interaction with the electrolyte is
important in investigating and improving the energy conversion process in these devices. III-V nitride materials are
promising candidates for photoelectrochemical energy applications. We demonstrate solar-to-hydrogen conversion in
these cells using p-type GaN and n-type InGaN as a photocathode and photoanode material, respectively. Additionally,
we demonstrate heteroepitaxial MOCVD growth of GaP on Si, enabling future work in developing GaPN as a
photocathode material.
Time-resolved photoluminescence measurements are used to study minority carrier lifetimes in type II superlattices (T2-
SL) to investigate the recombination mechanisms that currently limit their performance. Time-domain measurements of
the photoluminescence signal demonstrate multiple exponential decay, which provide information on background
carriers, acceptor states and trap states. The temperature dependence of the TRPL signal shows that the carrier lifetime is
dominated by Shockley-Read-Hall recombination. Optimal sample design for photoluminescence measurements is
discussed. Photoluminescence measurements and modeling of the time-resolved signal in device structures demonstrate
that the restoring current in a narrow bandgap junction dominates the carrier recombination, leading to measured
lifetimes that are ostensibly long. Experimental results are presented on T2-SL samples that vary the superlattice
absorber width and doping level. The effect of the interface type on carrier lifetime is investigated in multiple quantum
well structures. Variations of the absorber width, doping level and interface type are not found to strongly influence the
carrier lifetime.
Most III-V nitride light emitting diodes have an n-down structure with Ga polarity. In such a device, the active layer is
grown on top of the n-cladding layer and the p-type cladding layer is grown on top of the active layer. We have analyzed
the band structure of such a device and found a reduced effective conduction band barrier due to the positive
spontaneous and piezoelectric polarization charge, resulting in large electron overshoot and necessitating the introduction
of the commonly employed electron blocking layer. On the other hand, the polarization charge at the corresponding
interface for a p-side down device with Ga polarity is negative, resulting in a significant enhancement of the electron
barrier and the existence of a 2D hole gas near the interface. These are beneficial to the performance of single
heterojunction LEDs.
We report the structural and optical properties of AlxGa1-xN/AlyGa1-yN quantum wells (QWs) structures grown by gas
source molecular beam epitaxy with ammonia on sapphire (0001) substrates. QWs structures consist of five pairs of
AlyGa1-yN, 0.3xGa1-xN, 0.55
We have developed AlGaN films deposited by plasma assisted molecular beam epitaxy (PA-MBE) that can possess enhanced internal quantum efficiency (> 30%) due to the presence of nanometer scale compositional inhomogeneities (NCI-AlGaN) within a wider bandgap matrix that inhibit nonradiative recombination through the large defect densities (> 1010cm-2) in these materials. Time- and temperature-dependent studies of the UV photoluminescence from these NCI AlGaN films as a function of growth conditions have been performed with the goal of optimizing the emission efficiency. Measurements of radiative and nonradiative lifetimes in conjunction with modeling indicate that the NCI AlGaN inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region.
Optical characterization of nitride semiconductors and device testing of ultraviolet emitters and detectors comprised of these materials are employed in addressing the challenges faced in developing semiconductor-based, compact, low-cost, low-power-consumption biodetection systems. Comparison of time-resolved photoluminescence (TRPL) on UV LED wafers prior to fabrication with subsequent device testing indicate that the best performance is attained from active regions that exhibit both reduced nonradiative recombination due to saturation of traps associated with point and extended defects and concomitant lowering of radiative lifetime with increasing carrier density. Temperature and intensity dependent TRPL measurements on a new material, AlGaN containing nanoscale compositional inhomogeneities (NCI), show that it inherently combines inhibition of nonradiative recombination with reduction of radiative lifetime, providing a potentially higher efficiency UV emitter active region. In addition, testing of GaN avalanche photodiodes (APDs) on low defect density bulk GaN substrates indicates that for the first time GaN APDs with diameters as large as 50 microns exhibit reproducible gain greater than 1000. These results show promise for replacement of photomultipliers in biodetection systems.
We report here the light emission from IR interband-cascade (IC) Type-II-super lattice LED structures. We employed two different IC epitaxial structures for the LED experiments consisting of 9 or 18 periods of active super lattice gain regions separated by multilayer injection regions. The light output (and the voltage drop) of the LEDs is observed to increase with increase of number of IC active regions in the device. The voltage drop decreases with increase of mesa size and light emission increases with mesa sizes. We have made 8x7 2-D LED array flip-chip bonded to fan out array. The black body emissive temperature is 650 and 1050 K for LED operation at room and liquid nitrogen temperature respectively. A comparison of different IR sources for scene generation is presented.
Femtosecond time-resolved and continuous wave optical techniques have been used to study fundamental nanoscale materials issues in III-nitride semiconductors relevant to the realization of high quality ultraviolet light emitters and photodetectors. It is demonstrated that compositional fluctuations in AlGaN active regions grown by plasma-assisted MBE can be employed to create nanoscale spatial localization that enhances the luminescence efficiency and PL lifetime (300-400 ps) despite high defect density (>1010cm-2) by inhibiting movement of carriers to nonradiative sites. Significant enhancement of this phenomenon has been obtained in a DH LED structure grown on a lower defect density (mid-109cm-2) AlGaN template, with PL lifetime increased by nearly a factor of two, corresponding to a defect density in the mid-107 cm-2 range, and only a 3.3 times drop in PL intensity when the temperature is raised from 12 K to room temperature, suggesting up to ~ 30% internal quantum efficiency. Femtosecond, time-resolved electroabsorption measurements of nanoscale high field transport in an AlGaN/GaN heterojunction p-i-n diode show an onset of velocity overshoot at an electric field of ~105 kV/cm for transport in the c-direction of wurzite GaN. Theoretical Monte Carlo calculations employing a full band structure indicate that at fields below ~300 kV/cm this velocity overshoot is associated primarily with band nonparabolicity in the Γ valley related to a negative electron effective mass. In addition, these calculations show that similar behavior is not expected for transport in the basal plane until much higher fields are attained, with important implications for the design of high power, high frequency electronics and avalanche photodetectors.
We have used subpicosecond time-resolved photoluminescence (TRPL) downconversion techniques to study the interplay of carrier localization and radiative and nonradiative processes in the active regions of light emitting III-nitride semiconductor ultraviolet optical sources, with the goal of identifying potential approaches that will lead to higher radiative efficiency. Comparison of TRPL in (In)AlGaN multiple quantum well active regions indicate that for addition of only 0.01 In content the PL decay time in an InAlGaN MQW is more than double that in an AlGaN MQW designed to emit at the same wavelength (360 nm), thus indicating the importance of indium for improvement of material quality, most likely through the suppression of point defects. This result is further underscored by TRPL data on 320 nm InAlGaN MQW active regions, which exhibit longer PL lifetimes than expected for growth on GaN templates with dislocation densities in the mid-108cm-2 range. While the PL lifetimes in these InAlGaN MQWs improve for growth on lower dislocation density HVPE bulk GaN substrates, a similar phenomenon is not observed for deposition on nearly dislocation-free bulk AlN substrates, suggesting that defect generation in the MQWs associated with lattice mismatch or AlN surface preparation may play an important role. The pump intensity dependence of the time zero signal and the TRPL decays in the MQWs implies that internal electric field-induced recombination through the barriers and interface states plays an important role in the radiative efficiency of quantum well active regions for c-axis oriented materials and devices. The effect of these internal electric fields can be mitigated through the use of nonpolar MQWs. The combination of more intense time-integrated PL spectra and shorter PL lifetimes with decreasing well width in GaN/AlGaN MQWs grown on a-plane LEO GaN for low pump intensity suggests that the radiative lifetime becomes shorter due to the accompanying increase in exciton binding energy and oscillator strength at smaller well width in these high quality samples. Finally, it is demonstrated that compositional fluctuations in AlGaN active regions grown by plasma-assisted MBE can be employed to create spatial localization that enhances the luminescence efficiency and PL lifetime (300-400 ps) despite high defect density (>1010cm-2) by inhibiting movement of carriers to nonradiative sites. Significant enhancement of this phenomenon has been obtained in a DH LED structure grown on a lower defect density (mid-109cm-2) AlGaN template, with PL lifetime increased by nearly a factor of two, corresponding to a defect density in the mid-107 cm-2 range, and only a 3.3 times drop in PL intensity when the temperature is raised from 12 K to room temperature, suggesting up to ~ 30% internal quantum efficiency.
In this paper we report on the fabrication and characterization of GaN, AlGaN, and AlN layers grown by hydride vapor phase epitaxy (HVPE). The layers were grown on 2-inch and 4-inch sapphire and 2-inch silicon carbide substrates. Thickness of the GaN layers was varied from 2 to 80 microns. Surface roughness, Rms, for the smoothest GaN layers was less than 0.5 nm, as measured by AFM using 10 μm x 10 μm scans. Background Nd-Na concentration for undoped GaN layers was less than 1x1016 cm-3. For n-type GaN layers doped with Si, concentration Nd-Na was controlled from 1016 to 1019 cm-3. P-type GaN layers were fabricated using Mg doping with concentration Na-Nd ranging from 4x1016 to 3x1018 cm-3, for various samples. Zn doping also resulted in p-type GaN formation with concnetration ND-NA in the 1017 cm-3 range. UV transmission, photoluminescence, and crystal structure of AlGaN layers with AlN concentration up to 85 mole.% were studied. Dependence of optical band gap on AlGaN alloy composition was measured for the whole composition range. Thick (up to 75 microns) crack-free AlN layers were grown on SiC substrates. Etch pit density for such thick AlN layers was in the 107 cm-2 range.
The U.S. Army Research Laboratory (ARL) has developed a number of near-infrared, prototype laser detection and ranging (LADAR) Systems based on the chirp, amplitude-modulated LADAR (CAML) architecture. The use of self-mixing detectors in the receiver, that have the ability to internally detect and down-convert modulated optical signals, have significantly simplified the LADAR design. Recently, ARL has designed and fabricated single-pixel, self-mixing, InGaAs-based, metal-semiconductor-metal detectors to extend the LADAR operating wavelength to 1.55 mm and is currently in the process of designing linear arrays of such detectors. This paper presents fundamental detector characterization measurements of the new 1.55 mm detectors in the CAML architecture and some insights on the design of 1.55 μm linear arrays.
We analyze the optoelectronic mixing characteristics of InAlAs, Schottky-enhanced, InGaAs-based, metal-semiconductor-metal photodetectors. For devices with Schottky-enhancement layers (SELs) of about 500 Å, the measured frequency bandwidth is less than that of a corresponding photodetector. The mixing efficiency decreases with decrease in optical power, decreases with increase in local oscillator frequency and decreases with decrease in mixed signal frequency. We attribute this behavior to the band-gap discontinuity associated with the SEL. For devices with thinner SELs (≈100 Å), the mixing characteristics are greatly improved: the bandwidth of the optoelectronic mixer (OEM) is similar to that of a corresponding photodetector and the mixing efficiency decreases only slightly with decrease in optical power. We attribute these results to the enhancement of the thermionic/tunneling current through the thinner SEL. We also present a circuit model of the Schottky-enhanced, InGaAs-based OEM to explain the experimental results.
Interdigitated-finger metal-semiconductor-metal photodetectors (MSM-PDs) are widely used for high-speed optoelectronic applications. Recently, GaAs MSM-PDs have been utilized as optoelectronic mixers (OEMs) in an incoherent laser radar (LADAR) system. InGaAs MSM-PDs would allow LADAR operation at eye-safe wavelengths, mainly 1.55 μm. Unfortunately, the Schottky barrier height on InGaAs is quite low (~0.1-0.2eV) leading to high dark current and, hence, low signal-to-noise ratio. To reduce dark current, the Schottky barrier is typically “enhanced” by employing a high-band-gap lattice-matched Schottky enhancement layer (SEL). Detectors using SELs yield low dark current, high responsivity, and high bandwidths. In this paper we analyze the mixing effect in InAlAs Schottky-enhanced InGaAs-based MSM-PDs. We find that the measured frequency bandwidth of such a mixer is smaller than when used as a photodetector. Moreover, the mixing efficiency depends on the light modulation and mixed signal frequencies and decreases non-linearly with decrease in optical power. This is not observed in GaAs-based and non-Schottky-enhanced InGaAs MSM-PDs. We present a circuit model of the MSM-PD OEM to explain the experimental results.
KEYWORDS: LIDAR, Sensors, Receivers, Modulation, Interference (communication), Signal to noise ratio, Signal detection, Signal processing, Prototyping, Optical amplifiers
The U.S. Army Research Laboratory (ARL) is investigating a ladar architecture based on FM/cw radar principles, whereby the range information is contained in the low-frequency mixing product derived by mixing a reference ultra-high frequency (UHF) chirp with an optically detected, time-delayed UHF chirp scattered from a target. ARL is also investigating the use of metal-semiconductor-metal (MSM) detectors as unique self-mixing detectors, which have the ability to internally detect and down-convert the modulated optical signals. ARL has recently incorporated a 1x32 element linear MSM self-mixing detector array into a prototype FM/cw ladar system and performed a series of characterization and outdoor image collection experiments using this prototype. This paper discusses the basic performance of the prototype system and presents some fundamental measurements as well as ladar imagery taken on the ARL Adelphi campus.
A three-dimensional electrical-thermal-optical numerical solver is applied to model top-emitting oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with GaAs/AlGaAs multiple-quantum-well active region. CW mode of operation is simulated over a range of voltages, covering sub-threshold spontaneous emission and lasing emission. Effect of self-distribution of electrical current is demonstrated for the first time in a self-consistent electrical-thermal-optical simulation of VCSELs.
The design of the next generation of vertical-cavity surface-emitting lasers (VCSELs) will greatly depend on the availability of accurate modeling tools. Comprehensive models of semiconductor lasers are needed to predict realistic behavior of various laser devices, such as the spatially nonuniform gain that results from current crowding. Advanced physics models for VCSELs require benchmark quality experimental data for model validation. This paper presents preliminary results of a collaborative effort at ARL to fabricate and experimentally characterize test optoelectronic structures and VCSEL devices, and at CFDRC to develop comprehensive multiphysics modeling, design and optimization tools for semiconductor lasers and photodetectors. Experimental characterization procedure and measurements of optical and electrical data for oxide-confined intracavity VCSELs are presented. A comprehensive multiphysics modeling tools CFD-ACE+ O’SEMI has been developed. The modeling tool integrates electronic, optical, thermal, and material gain data models for the design of VCSELs and edge emitting lasers (EELs). This paper presents multidimensional simulation analysis of current crowding in oxide-confined intracavity VCSELs. Computational results helped design the test structures and devices and are used as a guide for experimental measurements performed at ARL.
Finite difference analysis was used to determine the thermal characteristics of continuous wave (CW) 850 nm AlGaAs/GaAs implant-apertured vertical-cavity surface-emitting lasers. A novel flip-chip design was used to enhance the heat dissipation. The temperature rise in the active region can be maintained below 40 °C at 4 mW output power with 10 mA current bias. In contrast, the temperature rise reaches above 60 °C without flip-chip bonding. The transient-temperature during turn-on of a VCSEL was also investigated. The time needed for the device to reach the steady-state temperature was in the range of a few tenths of a milli-second, which is orders of magnitude larger than the electrical or optical switch time. Flip-chip bonding will reduce the shift of the wavelength, peak power, threshold current and slope efficiency during VCSEL operations.
We report on temporal response measurements of InGaAs metal-semiconductor-metal photodetectors (MSM-PDs) under high-illumination conditions. The peak current efficiency of the MSM-PDs decreases as the optical pulse energy increases due to space-charge-screening effects. The screening effects begin to occur at an optical pulse energy as low as 1.0 pJ/pulse, as predicted by a recent two-dimensional model. The fall time and full width at half maximum of the impulse response increase as the optical pulse energy increases and decrease as the bias voltage increases. For optical pulse energies between 1.0 pJ and 100 pJ, the rise time displays a U-shaped behavior as the bias voltage increases. This may be associated with the shape of the electron velocity-field characteristic in conjunction with screening of the dark field by optically generated carriers.
We have used femtosecond time-resolved reflectivity and luminescence downconversion techniques to study carrier relaxation, localization, and recombination in III-nitride semiconductors. Intensity dependent, frequency degenerate pump-probe reflectivity measurements employing near-bandgap excitation provide information about initial carrier localization, subsequent ultrafast heat generation due to nonradiative recombination or trapping in states deep in the bandgap, and photoinduced absorption associated with excitation of carriers from localized states to the bands. These phenomena and their experimental signatures are illustrated for Al0.25Ga0.75N and Al0.4Ga0.6N samples, in which the photoinduced change in reflectivity ΔR decays faster with decreasing intensity and changes sign, with faster decays for a given intensity in the higher Al content sample. This behavior suggests that in these cases the dynamics are governed by trapping at localized states associated with alloy fluctuations that become deeper and more numerous as the Al content increases. Within this context the sign change and subsequent temporal evolution of ΔR may be indicative of ultrafast heat generation and/or photoinduced absorption, depending upon A1 content. Nondegenerate pump-probe reflectivity experiments designed to separate the electronic contributions of the ΔR decays from the slower thermal components by using a sub-bandgap probe are used to measure carrier lifetime in GaN. Comparison with data obtained from frequency degenerate experiment sunder identical excitation conditions employing a near bandgap probe indicate that in the frequency degenerate case the decay times in ΔR are inflated due to the presence of an additional long-lived component with the same sign as the electronic contribution. The sign and power dependence of this slow decay suggest that it may be associated with screening of a surface electric field by carriers trapped in deep states. In addition, a new technique is presented that employs luminescence downconversion using an ultrashort gating pulse to enable the characterization of UV light emission from III-nitride semiconductors with subpicosecond temporal resolution. This technique also allows one to measure PL rise times and fast components of multiple decays in the subsequent time evolution of the PL intensity. Comparison of luminescence emission intensity and lifetime in GaN and AlGaN with ~0.1 Al content grown homoepitaxially on GaN templates with the same quantities measured in heteroepitaxial layers grown on sapphire indicate significant improvement in the homoepitaxial layers due to reduction in defect density. Fast (<15 ps) initial decays in the AlGaN are attributed to localization in shallow traps associated with alloy fluctuations, with subsequent recombination through gap states.
Variation in rectification current with ac-bias frequency has recently been observed in metal-semiconductor-metal (MSM) detectors when utilized as optoelectronic mixers in a frequency-modulated continuous-wave (FM/cw) LADAR System. This current degrades the performance of the LADAR System by inducing false targets. In this paper, we present a detailed experimental and theoretical investigation on the origin of this current. We find that MSM detectors exhibit asymmetric current-voltage characteristics that are related to imperfections in device design and processing. We also find that, although the asymmetry is usually small, a rectification current may exist even under zero mean ac bias. Both the dark current and the photocurrent exhibit asymmetric behavior, but have opposite asymmetry with respect to one another. Under transient bias voltage the device shows two transient current responses: (1) a fast one related to the displacement current and (2) a slow one related to the removal of carriers from the device. The asymmetry in current related to the slow process is opposite to the dc asymmetry, while the asymmetry in current related to the fast process is more symmetric. The rectification current varies not only with ac voltage and optical power, but also with ac bias frequency.
The U.S. Army Research Laboratory (ARL) is investigating a ladar architecture based on FM/cw radar principles, whereby the range information is contained in the low-frequency mixing product derived by mixing a reference ultra-high frequency (UHF) chirp with a detected, time-delayed UHF chirp. ARL is also investigating the use of unique self-mixing detectors that have the ability to internally detect and down-convert light signals that are amplitude modulated at UHF. When inserted into the ARL FM/cw ladar architecture, the self-mixing detector eliminates the need for wide band transimpedance amplifiers in the ladar receiver thereby reducing both the cost and complexity of the system. ARL has fabricated a 32 element linear array of self-mixing detectors and incorporated it into a breadboard ladar using the ARL FM/cw architecture. This paper discusses the basic theory of detector operation, a description of the breadboard ladar and its components, and presents some fundamental measurements and imagery taken from the ladar using these unique detectors.
We present an optically-detected time-of-flight technique with femtosecond resolution that monitors the change in the electroabsorption due to charge transport in a p-i-n diode, and show how it may be used to determine the electron transit time, velocity-field characteristic, and transient electron velocity overshoot in GaN at room temperature. In a GaN homojunction p-i-n diode, the peak electron velocity of 1.9x107 cm/s , corresponding to a transit time of ~2.5 ps across the 0.53 micrometers depletion region, is attained at ~ 225 kV/cm. The steady-state velocity-field characteristic is in qualitative agreement with theoretical calculations. A measurement of the high field transient electron velocity overshoot was also performed using a semi-transparent p-contact AlGaN/GaN heterojunction p-i-n diode. Transient electron velocity overshoot is observed at fields as low as ~100 kV/cm, with the peak transient electron velocity becoming larger with increasing electric field until a maximum of 7.25x107 cm/s is observed within the first 200 fs after photoexcitation at a field of 320 kV/cm. At higher fields, the measurement of the peak velocity is limited by the 80 fs duration of the pulses, but the increase in transit time with increasing field suggests the onset of negative differential resistance. Theoretical Monte Carlo calculations incorporating a GaN full-zone band structure show that although the peak steady-state velocity occurs at ~200 kV/cm, the ensuing negative differential resistance region of the velocity-field curve is not initially associated with intervalley transfer, as the majority of electrons do not attain sufficient energy to effect this transfer until they are subjected to much higher fields (>325kV/cm). Insight into this behavior can be gleaned from the band nonparabolicity deduced from the constant energy surfaces in the (Gamma) valley, which shows that the effective mass in the c-direction can be viewed as becoming larger at high k-values. This larger effective mass may play a role in velocity overshoot by reducing the velocity and momentum relaxation time at high k-values in the (Gamma) valley. Theoretical calculations employing a semiclassical transport model in the collisionless regime confirm the importance of this nonparabolicity for the determination of the temporal shape of the transient velocity overshoot curves.
The optoelectronic mixing effect in metal-semiconductor-metal photodetectors (MSM-PDs) is studied. Numerical results, using the Scharfetter-Gummel scheme, are presented for gallium-arsenide (GaAs) MSM-PDs with different donor concentrations and analytical results are presented for devices with high background donor concentration operating below the flat-band condition and for low background donor concentration operating above the flat-band condition. MSM-PDs with unequal Schottky barrier heights at the electrodes (asymmetric MSM-PDs) are also studied. We find that asymmetric detectors exhibit asymmetric dc characteristics with the photocurrent asymmetry opposite to the dark-current asymmetry. We also find that the mixing efficiency of the MSM-PD increases with increase in applied ac voltage and decreases with increase in ac frequency. For asymmetric detectors, a rectification current exists even under zero mean ac bias that varies not only with ac voltage and optical power but also with ac-bias frequency. The theoretical results agree with observed experimental results.
We have used femtosecond time-resolved optical techniques to study fundamental materials issues in III-nitride semiconductors relevant to the realization of high quality ultraviolet photodetectors. Intensity dependent pump-probe reflectivity and transmission measurements have been employed in the investigation of carrier dynamics in AlGaN alloys with Al content ranging from ~0.15 to 0.4. For the Al0.15Ga0.85N sample, the intensity dependence of the (Delta) R decay suggests that at high intensity the shallow traps are saturated and ultrafast nonradiative recombination dominates the carrier dynamics. For the Al0.25Ga.75N and Al0.4Ga0.6N samples (Delta) R decays faster with decreasing intensity and changes sign. Moreover, the decays are faster for a given in tensity in the higher Al content sample. This behavior suggests that in these cases the dynamics are governed by trapping at localized states that become deeper and more numerous as the Al content increases. Within this context the sign change in (Delta) R in A;0.4Ga0.6N may be indicative of the onset of photoinduced absorption associated with the excitation of carriers from the localized states to the bands, which has also been observed in time-resolved transmission measurements. This localization may be associated with alloy fluctuations that broaden the absorption edge of the material and degrade the long-wavelength performance of photodetectors. In addition, time-resolved electroabsorption measurements on an AlGaN/GaN heterojunction p-i-n photodiode have been used to study the transient electron velocity overshoot for transport in the c-direction in wurzite GaN. The velocity overshoot is observed at fields well below the field at which the calculated peak steady-state velocity occurs, and it increases with electric field up to ~320 kV/cm, at which field a peak velocity of 7.25x107 cm/s is attained within the first 200 fs after photoexcitation. These results are consistent with theoretical Monte Carlo calculations incorporating a GaN full-zone band structure, which show that because of band nonparabolicity in the (Gamma) valley the majority of electrons do not attain sufficient energy to effect intervalley transfer until they are subjected to higher fields (>325kV/cm). This behavior may have important implications for avalanche photodiodes, for which electrons are promoted to higher lying bands for participating in the avalanche process.
The Army Research Laboratory is researching scannerless ladar systems for smart munition and reconnaissance applications. Here we report on progress attained over the past year related to the systems architectures, component development, and test results of the scannerless ladars. The imaging system architectures achieve ranging based on a frequency modulation/continuous wave technique implemented by directly amplitude modulation a near-IR diode laser transmitter with a radio frequency subcarrier that is linearly frequency modulated. The diode's output is collected and projected to from an illumination field in the downrange image area. The returned signal is focused onto an array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency signal whose frequency is proportional to the target range. This IF signal is continuously sampled over each period of the rf modulation. Following this, an N channel signal processor based-on field-programmable gate arrays calculates the discrete Fourier transform over the IF waveform in each pixel to establish the ranges to all the scatterers and their respective amplitudes. Over the past year, we have continued development of laser illuminators at .8 and 1.55 micrometers , built 1D self-mixing MSM detector arrays at .8 and 1.55 micrometers and built an N channel FPGA signal processor for high-speed formation of range gates. In this paper we report on the development and performance of these components and the results of system test conducted in the laboratory.
A high-bandwidth, free-space integrated optoelectronic interconnect system was built for high-density, parallel data transmission and processing. Substrate-emitting 980 nm vertical-cavity surface-emitting laser (VCSEL) arrays and photodetector arrays, both driven by complimentary metal- oxide-semiconductor (CMOS) circuitry, were employed as a transmitter and receiver. We designed, fabricated, hybridized, and packaged the VCSEL transmitter and photoreceiver arrays. Data rates above 1 Gbs for each channel on the VCSEL/CMOS emitter and 500 MHz for each channel on photoreceiver were measured, respectively. We integrated the optical interconnects using free-space optical alignment and demonstrated serial and parallel transmissions of digital data and video images.
We present an optically-detected time-of-flight technique with femtosecond resolution that monitors the change in the electroabsorption due to charge transport in a p-i-n diode, and show how it may be used to determine the electron transit time, velocity overshoot, and velocity-field characteristic in GaN at room temperature. In a GaN homojunction p-i-n diode, the transit time drops with increasing electric field E in the intermediate field regime (50 - 100 kV/cm), and the electron velocity possesses a weak, quasi-linear dependence on E attributed to polar optical phonon scattering. In the high field regime the transit time and the electron velocity gradually become independent of E. The peak electron velocity of 1.9 X 107 cm/s, corresponding to a transit time of approximately 2.5 ps across the 0.53 micrometers depletion region, is attained at approximately 225 kV/cm. The experimental results are in qualitative agreement with theoretical steady-state velocity-field characteristics found in the literature. A measurement of the high field (approximately 300 kV/cm) transient electron velocity overshoot was also performed using a semi-transparent p-contact AlGaN/GaN heterojunction p-i-n diode. The peak electron velocity of 6.25 X 107 cm/s attained within the first 200 fs decays within 1 ps to a steady-state velocity of 3.2 X 107 cm/s in this improved device.
There is a need for integrating various active and passive devices on a single substrate to increase the functionality of optical modules [1-4]. One of the methods is to use regrowth for creating a low-loss passive waveguide butt-coupled to the active waveguide [1]. Besides being a complex technology, issues like low-loss coupling over multiple runs is still a challenge. A second technique used for integration is selective area growth [2]. In general, this technology does not allow for freedom in the design of the various layer thickness and bandgaps of the integrated waveguides. Quantum well interdiffusion [3] has also been used for integration by altering the bandgaps of the waveguides but also suffers from a lack of freedom in waveguide design and in the selection of the proper bandgaps.
The U.S. Army Research Laboratory (ARL) is currently investigating unique self-mixing detectors for ladar systems. These detectors have the ability to internally detect and down-convert light signals that are amplitude modulated at ultra-high frequencies (UHF). ARL is also investigating a ladar architecture based on FM/cw radar principles, whereby the range information is contained in the low-frequency mixing product derived by mixing a reference UHF chirp with a detected, time-delayed UHF chirp. When inserted into the ARL FM/cw ladar architecture, the self-mixing detector eliminates the need for wide band transimpedance amplifiers in the ladar receiver because the UHF mixing is done internal to the detector, thereby reducing both the cost and complexity of the system and enhancing its range capability. This fits well with ARL's goal of developing low-cost, high-speed line array ladars for submunition applications and extremely low-cost, single pixel ladars for ranging applications. Several candidate detectors have been investigated for this application, with metal-semiconductor-metal (MSM) detectors showing the most promise. This paper discusses the requirements for a self-mixing detector, characterization measurements from several candidate detectors and experimental results from their insertion in a laboratory FM/cw ladar.
We report on the fabrication and characterization of interdigitated finger, optical detectors/mixers. These devices are used in an FM/cw ladar system to detect and demodulate low intensity amplitude-modulated optical signals. Three different types of interdigitated finger structure were tested and compared in this study. We also present a theory to explain the asymmetry observed in the devices and discuss its implication in an FM/cw ladar application.
A free-space integrated optoelectronic interconnect was built to explore parallel data transmission and processing. This interconnect comprises an 8 X 8 substrate-emitting 980-nm InGaAs/GaAs quantum-well vertical-cavity surface- emitting laser (VCSEL) array and an 8 X 8 InGaAs/InP P-I- N photodetector array. Both VCSEL and detector arrays were flip-chip bonded onto the complimentary metal-oxide- semiconductor (CMOS) circuitry, packaged in pin-grid array packages, and mounted on customized printed circuit boards. Individual data rates as high as 1.2 Gb/s on the VCSEL/CMOS transmitter array were measured. After the optical alignment, we carried out serial and parallel transmissions of digital data and live video scenes through this interconnect between two computers. Images captured by CCD camera were digitized to 8-bit data signals and transferred in serial bit-stream through multiple channels in this parallel VCSEL-detector optical interconnect. A data processing algorithm of edge detection was attempted during the data transfer. Final images were reconstructed back from optically transmitted and processed digital data. Although the transmitter and detector offered much higher data rates, we found that the overall image transfer rate was limited by the CMOS receiver circuits. A new design for the receiver circuitry was accomplished and submitted for fabrication.
The presentation gives an overview of the ongoing Army Research Laboratory (ARL)/University of Maryland research effort on vertical-cavity-surface-emitting-laser (VCSEL) interconnects and OE processing and why this technology is of interest. ARL is conducting a research and development effort to develop VCSELs, VCSEL arrays, and their hybridization with complimentary metal-oxide-semiconductor (CMOS) electronics and microwave monolithic integrated circuits (MMICs). ARL is also very active in the design, modeling, and development of diffractive optical elements (DOEs). VCSEL-CMOS flip-chip optoelectronic circuits and DOEs are of interest together with detector-CMOS flip-chip circuits to provide digital and analog optoelectronic interconnects in optoelectronic processing architectures. Such optoelectronic architectures show promise of relieving some of the information flow bottlenecks that are emerging in conventional digital electronic processing as the electronic state of the art advances at a rapid pace and the electronic interconnects become a significant limitation. Such optoelectronic interconnects are also of interest in the development of analog optoelectronic processing architectures that are very difficult to implement in conventional electronic circuitry due to the incorporation of dense arrays of interconnects between electronic elements. VCSEL-MMIC- detector flip-chip circuits are of interest for the incorporation of optoelectronic interconnects into analog RF systems where the optoelectronic interconnect offers advantages of size, weight, bandwidth, and power consumption. VCSEL-MMIC interconnects may also play a role in future high- speed digital optoelectronic processing.
We report on a low-cost monolithic integration method for fabricating semiconductor photonic integrated circuits using selective epitaxy without regrowth. To build a photonic circuit, active and passive devices are required with different energy band gaps. Selective-area growth that uses a mask of parallel SiO2 strips on a substrate induces variations in epilayer thickness and composition that result in localized shifts of the band gap. From our photoluminescence measurements on such selectively grown InGaAsP/InP multiple quantum well-waveguide materials, a band gap shift above 100 meV has been observed. We developed a waveguide device processing technique for this kind of selective epitaxy material. A few combinations of integrated waveguide splitters, modulators, and amplifiers were designed and fabricated. To test each individual device, we designed a new measurement method which determines the insertion loss and the intrinsic waveguide loss for a device in the middle of an integrated system. Preliminary results indicate few dB gain for a 0.6 mm long amplifier and approximately 10 dB contrast for a modulator operating near 1550 nm. Based on the initial data, new quantum well layer and waveguide structures have been designed to improve the performance in our next-generation devices.
The detection of light in the UV portion of the electromagnetic spectrum is critical to a number of applications. Until very recently, the primary means of light detection in the UV was with either silicon photodiodes or photomultiplier tubes, both of which have serious drawbacks. With the advent of optoelectronic devices fabricated in the ternary alloy of AlGaN, the possibility exists to produce high-performance solid-state photodetector arrays sensitive to the visible-blind and solar-blind regions of the spectrum. In this paper, we discuss recent advances in the area of UV photodetectors fabricated on GaN and AlGaN. Various device structures are presented, and their peculiar characteristics discussed in terms of responsivity, dark current, gain, temporal response, and frequency response. Models describing the current transport mechanisms and the quantum efficiencies of these photodiodes are discussed. Special emphasis is given to novel device structures that improve on the temporal, spectral, and electrical characteristics of AlGaN-based photodiodes. Specifically, results for a transparent recessed-window p-i- n device, and a semi-transparent electrode device structure are described. Finally, the results of a separate absorption, charge, and multiplication avalanche photodetector are presented. This device structure resulted in a stable gain of > 10 at a reverse bias of approximately 40 V.
Femtosecond nonlinear optical techniques have been employed in the study of carrier dynamics and transport in UV detector materials. Visible femtosecond pulses derived from the signal beam of a 250 kHz regenerative amplifier-pumped optical parametric amplifier were frequency doubled to obtain pulses tunable from 250 nm to 375 nm. Time-resolved reflectivity experiments indicate that the room-temperature carrier lifetime in GaN grown by double lateral epitaxial overgrowth is about 3 times longer than that of GaN grown on sapphire without benefit of this technique. The electron velocity-field characteristics and saturation velocity in GaN have been obtained form time-resolved studies of electroabsorption in a GaN p-i-n diode. The peak steady- state velocity of 1.9 X 107 cm/s in this device occurs at 225 kV/cm. Time-resolved transmission measurements have been used to monitor ultrafast carrier relaxation phenomena in a thin AlGaN layer with bandgap in the solar blind region of the spectrum. Excitation intensity and wavelength dependent studies of the photoinduced bleaching decays suggest that they are primarily governed by trapping in a high density of sub-bandgap defect levels.
KEYWORDS: Vertical cavity surface emitting lasers, Sensors, Photodetectors, Signal detection, Optoelectronics, Optical interconnects, Modulation, Signal attenuation, Detector arrays, Chemical elements
We demonstrate an optoelectronic interconnect based on an 8 by 8 array of vertical-cavity surface-emitting lasers, an 8 by 8 array of photodetectors, and a single compound lens. The substrate-emitting VCSEL array and back-illuminated photodetector array were flip-chip bonded to a CMOS driver circuit and a Si fan-out pad array, respectively. The CMOS driver provides laser addressing, signal conditioning and modulation current.In this paper we will describe the interconnect configuration, device structures and characteristics, and CMOS driver circuits. We then discuss the system operation and performance.
Expanded mode alignment tolerant optical structures will play an important role in low-cost, large-scale packaging of optoelectronic devices. In this paper, we present two expanded mode structures for operation at 1.55 micrometers . Our devices use single epitaxial growth and conventional fabrication schemes. High butt-coupling efficiencies (> 40%) to a single mode fiber with relaxed alignment tolerances were achieved. The first of our devices uses adiabatic transformation over 500 micrometers . The second device uses resonant coupling over a much shorter region of 200 micrometers . The second scheme offers an interesting possibility for monolithic integration of active-passive components. We present the design and simulation results of such an integrated device.
Erbium (Er) doped semiconductors are of interest for light- emitting device applications operating at around 1.55 micrometers and for the potential integration with other semiconductor devices. However, the optical emission of Er3+ ions in semiconductors has not been as efficient as in dielectric materials, particularly at room temperature. This may be because ionic bonds, which are characteristic of dielectrics, are better suited for forming the required Er3+ energy levels than are covalent bonds, which are present in most III-V semiconductors. In this paper, we report 1.55 micrometers emission from an Er-doped GaN LED. We also discuss effect of the measurement temperature on the emission spectrum as well as the effect of sample annealing on the emission spectrum.
Polarization controllable semiconductor optical waveguide material/devices have been design and studied using different type of strained quantum well heterostructures in the active region of the waveguide. A phase modulator devices has demonstrated a linear relative phase shift between the TE and TM polarizations with a V(pi ) of approximately 4 V. Another electro-absorption waveguide modulator structure has shown a bias tunable polarization mode so that the polarization properties can be actively controlled. We are also developing a monolithic integration techniques using selective epitaxial growth to achieve band gap variation within the same wafer and therefore, fabric integrated passive and active waveguide systems without high cost regrowth or device coupling.
GaN homojunction and InGaN/GaN single quantum well (SQW) light-emitting diodes (LEDs) were fabricated and characterized. The blue LED has a typical operating voltage of 3.6 V at 20 mS. Temperature dependence of the emission characteristics of the GaN-based LEDs was studied from 25 degrees C to 130 degrees C. The emission intensity of the InGaN/GaN SQW LED decays exponentially with the increase of temperature. The temperature coefficient Lc is 2.5 X 10-2/degrees C. The emission wavelength of the InGaN/GaN SQW LED was found to be relatively independent of the LED operation temperature while the UV emission of the GaN homojunction LED has a red-shift with the increase of temperature. The temperature coefficient (alpha) of the bandgap energy of Si-doped n-type GaN derived from the EL measurement is 8.5 X 10-4/K. The low temperature coefficient of emission wavelength of the InGaN/GaN SQW LED indicates that the recombination processes involves localized states. The localized states are attributed to excitons localized at the potential minima in the quantum well due to In content fluctuation.
In this paper we show that strain is a useful effect and in addition to improving the performance of existing devices it may be used with greater functionality to demonstrate novel optoelectronic devices. We give as examples two such devices that we have conceived and demonstrated, one each in the two respective areas of strain, lattice-mismatch induced and thermal expansion coefficient mismatch induced. The higher performance and functionality in these devices demonstrate that strain engineered heterostructures are a very promising area for device research and development.
We report a novel approach to normal incidence multiple quantum well light modulators. The quantum-confined Stark effect is utilized to tune the polarization rotation and phase retardation created by a thermally induced in-plane anisotropic strain. An exceedingly high contrast ratio of 4800:1 is demonstrated for a normally-on device at room temperature.
Lift-off thin films of GaAs/AlGaAs multiple quantum wells (MQW) have been bonded to different transparent substrates that possess either direction-independent or direction-dependent thermal expansion. Duet to the differential thermal expansion between the thin film and the much thicker substrate, the MQW is under a thermally induced in-plane strain. By proper choice of the substrate crystallographic orientation and bonding temperature various forms of in-plane anisotropic strain have been realized. A detailed study of the anisotropy in the complex refractive index resulting from the in-plane anisotropic strain is presented. The electric field dependence of the anisotropic absorption and birefringence has also been studied.
Experimental results on GaAs-AlAs multiple quantum wells where the confined electron level is initially delocalized due to the mixing between the (Gamma) and X levels are presented. The applied electric field reduces this coupling and reconfines the electron in the GaAs layer. This causes an increase in oscillator strength and a blue shift of the heavy hole to (Gamma) - electron transition. Reduction of the charge transfer from narrow wells to a wide well has also been observed.
Data from a series of experiments on porous silicon are presented, which provide important information about the luminescence processes in this promising new material. Raman spectra were correlated with PL spectra to clarify the significance of the silicon microcrystallites sizes on the photoluminescence (PL). The temperature dependence of the PL intensity, time constants, and peak PL energies was determined to reveal the role of more highly localized states such as defects and impurities. The dielectric constant was measured using angel resolved ellipsometry to relate quantum size effects to possible excitonic levels in the microcrystallites. The excitation power dependence of the PL was determined to be linear, indicating a one photon-one electron process is responsible for the excitation of the PL. The excitation spectrum of the PL was measured to provide information about the PL excitation process and the critical energy levels.
We report the observation of the excitonic recombination of degenerate quasi-two-dimensional electrons with localized photoexcited holes. Low-temperature photoluminescence spectra exhibit a sharp Fermi surface and a well resolved 'Mahan' exciton resonance which is sensitive to electron density ns and temperature. We observe a sharp decrease in the exciton linewidth with a concomitant double peak spectrum which is attributed to the formation of biexcitons and a large discontinuity in the exciton groundstate energy at ns approximately equals 1.9 X 1011 cm-2. An abrupt transition from excitonic to free electron-hole recombination occurs at ns approximately equals 2.2 X 1011 cm-2.
The Fermi level position in low temperature (LT) GaAs is studied by photoreflectance (PR). The experiments show that the Fermi level in both the as-grown and the annealed LT-GaAs is firmly pinned, however, the pinning position occurs at different energies: 0.47 eV below the conduction band edge for the as-grown samples and 0.65 eV below the conduction band edge for the annealed samples. The pinning in the as-grown LT-GaAs is the result of a high degree of charge compensation of deep levels, while the pinning in the annealed LT-GaAs is due to the depletion of carriers by the Schottky barrier at the metallic As precipitates. From the measured Fermi level and ionization ratio of As antisites, the (0/+) donor level of the As antisite is found to be at Ec - 0.57 eV.
For planar multilayer waveguides with multiple quantum wells (MQW), integral formulas for the optimal refractive index when the MQW are replaced by a single uniform layer are derived by considering linear perturbations of the fields and propagation constants for solutions of the wave equation. These integral formulas simplify to familiar discrete averages if the spatial variations of the fields over a period of the MQW are small. The discrete average result for TE modes is applied to a waveguide with a single MQW guiding region and the relative magnitude of the errors in the power distribution and propagation constant for symmetric and antisymmetric modes are explained.
We report the first photoreflectance measurement of strain-induced piezoelectric field in a (111)B InGaAs/GaAs structure. The InGaAs quantum well was pseudomorphically grown in the undoped regions of a GaAs undoped-heavily doped structure. Four structures, two each with the same layer structures but different orientation, (111)B and (100), were used in this study. The electric fields in the undoped GaAs region were measured by Franz-Keldysh oscillations in photoreflectance. All the samples have a surface barrier height of about 0.7 eV. However, the measured electric field is 30% stronger in the (111)B sample compared to the (100) sample. We attribute this difference to the strain induced electric field in the (111)B sample. The piezoelectric field in (111)B strained In0.15Ga0.85As obtained in this measurement is 2.2 +/- 0.5 X 105 V/cm, which agrees very well with theory.
Photoconductive semiconductor switches are useful for the generation of high voltage electrical pulses with picosecond rise times. In addition, the availability of high power semiconductor laser arrays allows the elimination of large flash-lamp pumped solid state lasers. In this paper, the role of electro-absorption is investigated. A theoretical model has been formulated which combines measured field and wavelength dependent absorption data with a one dimensional drift and diffusion model. The results of the model indicate the existence of optimum parameters for both pump wavelength and pump intensity before a plateau of diminishing returns is achieved. The results along with a detailed explanation of the theoretical formalism is
included in the paper.
In order to gain information about the band offset in the strained layer
InGa1As/GaAs system we have investigated photorefleCtanCe (PR) from two
single quantum wel 1 samples at 300 K and 77 K. Our samples have we 1 1 width
L= 110 A (sample 1) and L = 107 A (sample 2) with In Composition x = 0. 11
(sample 1 ) and x = 0. 19 (sample 2 ) . We have observed a number of intersubband
transitions in the spectra of both samples. By studying the polarization
dependence of the PR at 300 K using an internal reflection mode we have
identified spectral features Corresponding to light and heavy hole to
conduction subband transitions. Good agreement between our experimental
results and an envelope function calculation (including strain) is obtained
for conduction band offset Q = 0.45 0.07 (sample 1) and Q = 0.67 0.07
(sample 2). These values comply with the compositional dependence of
proposed by Joyce et al [Phys.Rev. B 38, 10978 (1988)1.
This paper discusses some recent developments in the use of the contactiess
electromodulation technique of photoreflectance for the in-situ monitoring of
thin-film growth at elevated temperatures by such methods molecular beam epitaxy
(MBE), metalorganic chemical vapor deposition (MOCVD) and gas phase molecular beam
epitaxy (GPMBE). The direct gaps (E) of GaAs, Ga082A1018As, InP and InGa1As
(x = 0.07 and 0.16) have been measured to over 600°C. These temperatures are
comparable to the growth condition for MBE, MOCVD and GPMBE. For these
semiconductors E can be evaluated to 5 meV at these elevated temperatures. Thus,
the temperature of GaAs and InP substrate material could be determined to
Also the Al composition of GaAlAs and In content of InGaAs could be monitored during
actual growth procedures. Results for GaAs and GaA1A5 have been obtained in an
actual MOCVD reactor including rotating substrate and flowing gases. We have
succeeded in obtaining the spectra of E of GaAs at 650°C in 30 seconds.
Using the contactiess modulation spectroscopy technique of photoreflectance, the
temperature variations of the direct gap E0 of GaAs, InP, GaA1As, InGaAs have
been measured at elevated temperatures up to 600°C. The parameters which describe
the temperature dependence of the band gap energies have been evaluated.
The ability to measure the band gap at elevated temperatures opens up many new
possibilities for in-situ monitoring of MBE and MOCVD processes. In this paper,
we review some of the recent developments in the use of photoreflectance at
elevated temperatures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.