We report on the use of femtosecond laser pulses to fabricate photonic devices (waveguides and interferometers) inside
commercial CE chips without affecting the manufacturing procedure of the microfluidic part of the device. The
fabrication of single waveguides intersecting the channels allows one to perform absorption or Laser Induced
Fluorescence (LIF) sensing of the molecules separated inside the microchannels. Microfluidic channels, with access
holes, are fabricated using femtosecond laser irradiation followed by chemical etching. Mach-Zehnder interferometers
are used for label-free sensing of the samples flowing in the microfluidic channels by means of refractive index changes
detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.