We report photometric measurements of selected exoplanet transits from the archive of the TOPTEC telescope, operated by our team at an observatory Horní Halže, near Klášterec nad Ohří, Czech Republic. We have compared measured geometry with catalogue geometry of selected exoplanetary systems. We have found a candidate for potential system with new non-transiting planet with the help of an archive TRESCA.
This paper informs about a construction of an all-spherical Cassegrain telescope with a two lens Volosov corrector. The entrance doublet of the Volosov corrector radically corrects the residual optical aberrations of the system and makes possible the attainment of high quality of images across the field of view of up to 2˚ within the whole visual spectral branch. One optical set of the system was manufactured in the IPP AV CR v.v.i – TOPTEC Center in Turnov in 2005. Its entrance diameter was 280 mm and focal length approximately 2450 mm.
The 8-inch Clark objective lens of the Astronomical Institute of the Czech Academy of Sciences is probably the oldest doublet used for professional astronomical observation in the Czech Republic. Its optical imaging performance has become legendary among several generations of professional astronomers. The lens was manufactured by Alvan Clark in Cambridge, Massachusetts at the end of the 1850s. The 8-inch refractor functioned as the main telescope of the astronomical observatory in Ondřejov in the first half of the twentieth century. The objective has been cleaned and restored twice in the TOPTEC Centre in Turnov. We had the opportunity to measure the optical parameters of the doublet during its time in Turnov and we subsequently evaluated its residual aberrations. This paper is a record of the results of the optical simulations.
We report on the discovery of new four variable stars in the Cassiopea constellation from the archive of the HALZ telescope, operated by the TOPTEC team at Horní Halže, near Klášterec nad Ohří, Czech Republic. The stars are catalogued as UCAC4 718-108144 (23h 04m 16.383s +53° 29’ 44.78”), UCAC4 725-101725 (23h 09m 27.87s +54° 51’ 23.27”), UCAC4 725-101699 (23h 09m 19.53s +54° 57’ 57.18”), UCAC4 722-105015 (23h 10m 42.4s +54° 14’ 33.33”). From the light curve, the stars should be a HADS – type variable (UCAC4 718-108144), an EW – type variable (UCAC4 725-101725), an EA - type variable (UCAC4 725-101699) and an ELL – type variable (UCAC4 722-105015). We registered these stars in the CzeV catalogue as new variable stars CzeV709, CzeV710, CzeV711 and CzeV715.
Affordable, long-wave infrared hyperspectral imaging calls for use of an uncooled FPA with high-throughput optics. This paper describes the design of the optical part of a stationary hyperspectral imager in a spectral range of 7–14 um with a field of view of 20°×10°. The imager employs a push-broom method made by a scanning mirror. High throughput and a demand for simplicity and rigidity led to a fully refractive design with highly aspheric surfaces and off-axis positioning of the detector array. The design was optimized to exploit the machinability of infrared materials by the SPDT method and a simple assemblage.
KEYWORDS: Diffraction gratings, Optical design, Diffraction, Germanium, Black bodies, Finite element methods, Hyperspectral imaging, Long wavelength infrared, Single point diamond turning, Diamond machining
Hyperspectral imaging as an instrument for obtaining a wide range of information on the world around us is a fast developing area of modern technology. In such systems, the desired information is obtained via the processing of stored spectral information of a measured scene. One of the main advantages of hyperspectral imaging over conventional imaging methods is the use of a broad spectral range, which is not restricted to just the visible range but can extend to adjacent regions and further, for example, deeply into the infrared region. The main element in such hyperspectral systems is the spectral separating system, which can be based on a wide variety of spectral dependent physical processes - birefringence, refraction, diffraction, etc. In this contribution, we would like to present the design and fabrication process of such a spectral separating system based on diffraction grating. The main requirements for this system were - operation in the long-wavelength infrared region (LWIR, 7-14 um), the highest possible diffraction efficiency in this spectral region with respect to the black body radiation of a temperature of 350 K, and the avoidance of restrictions inherent to fabrication. The design was carried out with the use of Scalar theory of transmission gratings, which is based on the idea of thin grating. The obtained results were compared to the designs produced via the Rigorous coupled wave theory (RCWA) and Finite Element Method (FEM). Fabrication of the designed grating was done in germanium with the use of single-point diamond turning.
We report on the discovery of a new variable star during the search for new exoplanets in the Centaurus constellation from the archive of the FRAM telescope, operated by the FRAM team at Los Leones, near Malargüe, Argentina. The star is catalogued as GSC 08630-01117 (11h 36m 10s -53° 12’ 15.04”). From the light curve, the star should be an ELL-type variable. We computed the period P = 0.6311+/- 0.0002 days. The maximum is 13.07 +/- 0.02 mag and minimum is 13.22 +/-0.02 mag (in the Johnson V filter) with an amplitude of about 0.15 mag. We registered this star in the CzeV catalogue and in the VSX catalogue as new variable star CzeV603. The FRAM telescope observed several transits of known exoplanets. These observations show the ability to detect new exoplanets using the FRAM telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.