This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Scaling power and bandwidth of mid-infrared supercontinuum source based on a GeO2 doped silica fiber
We illustrate the different noise measurements and their impact on a state of the art UHR-OCT system producing images of skin. The sensitivity of the system was higher than 95 dB, with an axial resolution below 4μm.
Further, Germania doped fiber has been pumped by conventional Silica based photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of Germania doped fiber for mid-infrared supercontinuum generation. This measurement ensures a possibility of Germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being pumped a 1060nm or a 1550nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized SC light source based on Silica and Germania fiber ever demonstrated to the date.
Here we will demonstrate a fully packaged, all-fiber, turn-key, low noise, 4.8W, 1.8-4.2 μm supercontinuum source, which can operate with variable repetition rates of up to 30 MHz. In addition we will discuss ways to reduce and counter the effects of pulse fluctuations and we demonstrate optimization of the output spectrum of the source for various applications. Such a source can give any mid-IR optics lab access to a performance which has previously only been available from dedicated beamlines at huge synchrotron facilities.
View contact details
No SPIE Account? Create one