Proceedings Article | 8 June 2011
Proc. SPIE. 8037, Laser Radar Technology and Applications XVI
KEYWORDS: Microelectromechanical systems, Signal to noise ratio, Transmitters, Mirrors, LIDAR, Sensors, Receivers, Field programmable gate arrays, Robots, Data acquisition
The Army Research Laboratory (ARL) is researching a short-range ladar imager for navigation, obstacle/collision
avoidance, and target detection/identification on small unmanned ground vehicles (UGV).To date, commercial UGV
ladars have been flawed by one or more factors including low pixelization, insufficient range or range resolution, image
artifacts, no daylight operation, large size, high power consumption, and high cost. ARL built a breadboard ladar based
on a newly developed but commercially available micro-electro-mechanical system (MEMS) mirror coupled to a lowcost
pulsed Erbium fiber laser transmitter that largely addresses these problems. Last year we integrated the ladar and
associated control software on an iRobot PackBot and distributed the ladar imagery data via the PackBot's computer
network. The un-tethered PackBot was driven through an indoor obstacle course while displaying the ladar data realtime
on a remote laptop computer over a wireless link. We later conducted additional driving experiments in cluttered
outdoor environments. This year ARL partnered with General Dynamics Robotics Systems to start construction of a
brass board ladar design. This paper will discuss refinements and rebuild of the various subsystems including the
transmitter and receiver module, the data acquisition and data processing board, and software that will lead to a more
compact, lower cost, and better performing ladar. The current ladar breadboard has a 5-6 Hz frame rate, an image size of
256 (h) × 128 (v) pixels, a 60° × 30° field of regard, 20 m range, eyesafe operation, and 40 cm range resolution (with
provisions for super-resolution or accuracy).