The Little Ultraviolet Camera (LUVCamera) is a low-cost, high-performance UV/optical camera system designed to support a range of space-based astronomical facilities. At the heart of LUVCamera is a GSENSE 4040-BSI scientific CMOS (sCMOS) sensor, similar to those found in commercial-off-the-shelf (COTS) cameras. Given the intended use of LUVCamera in space-based missions, it is crucial to understand not only the performance of the sensor, but also the degradation of that performance due to effects from radiation in space environments. In this work, we report our characterization results of a SBIG Aluma AC4040 which utilizes this sensor, as well as those of a SBIG Aluma AC2020 (based on the smaller GSENSE 2020-BSI) which has been exposed to radiation. Specifically, we detail the methods used to characterize the sensors along with measurements of the read noise (RN), dark current (DC), and absolute quantum efficiency (QE). Additionally, we report changes in those quantities after radiation exposure for the AC2020. We conclude that COTS sCMOS sensors such as these are sufficiently suited for applications in space-based missions.
Modern scientific complementary metal-oxide semiconductor (sCMOS) detectors provide a highly competitive alternative to charge-coupled devices (CCDs), the latter of which have historically been dominant in optical imaging. sCMOS boast comparable performances to CCDs with faster frame rates, lower read noise, and a higher dynamic range. Furthermore, their lower production costs are shifting the industry to abandon CCD support and production in favour of CMOS, making their characterization urgent. In this work, we characterized a variety of high-end commercially available sCMOS detectors to gauge the state of this technology in the context of applications in optical astronomy. We evaluated a range of sCMOS detectors, including larger pixel models such as the Teledyne Prime 95B and the Andor Sona-11, which are similar to CCDs in pixel size and suitable for wide-field astronomy. Additionally, we assessed smaller pixel detectors like the Ximea xiJ and Andor Sona-6, which are better suited for deep-sky imaging. Furthermore, high-sensitivity quantitative sCMOS detectors such as the Hamamatsu Orca-Quest C15550-20UP, capable of resolving individual photoelectrons, were also tested. In-lab testing showed low levels of dark current, read noise, faulty pixels, and fixed pattern noise, as well as linearity levels above 98% across all detectors. The Orca-Quest had particularly low noise levels with a dark current of 0.0067 ± 0.0003 e−/s (at −20◦C with air cooling) and a read noise of 0.37 ± 0.09 e− using its standard readout mode. Our tests revealed that the latest generation of sCMOS detectors excels in optical imaging performance, offering a more accessible alternative to CCDs for future optical astronomy instruments.
Astronomy-grade cameras with robust performance and heritage in the space environment have long been costly, substantially limiting capacity for space-based astronomy and creating a resource barrier to access. Additionally, ultraviolet observations have historically been limited by the low-sensitivity of most sensors in this wavelength range. The LUVCam program is designed to address both issues, providing a high-performance, low-cost, UV/optical camera system sufficiently capable to support a wide-array of space-based astronomy missions. LUVCam features a large format, low-noise, large pixel, and high quantum efficiency, commercial-off-the-shelf backside illuminated CMOS sensor, packaged with custom built readout electronics and thermomechanical structure. LUVCam is ITAR-free, and cheap to fabricate, opening up new opportunities for access to space telescopes. LUVCam has reached TRL 6, and has passed qualification testing for operation in low-earth orbit, with competitive performance from 200-900 nm. LUVCam is manifested for multiple near-term orbital missions, including a technology demonstration CubeSat, and a UV transient astronomy SmallSat.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.