Optical neuromorphic computing marks a breakthrough over traditional digital computing by offering energy-efficient, fast, and parallel processing solutions while challenges remain in incorporating nonlinearity efficiently. Leveraging nonlinear wave dynamics in optical fibers as a computational resource may provide a solution. Our research demonstrates how femtosecond pulse propagation in optical fibers can emulate neural network inference, utilizing the high phase sensitivity of broadband light for creating nonlinear input-output mappings akin to Extreme Learning Machines (ELMs). Experimental results show high classification accuracies and low RMS errors in function regression, all at pico-joule pulse energy. This indicates our method's potential to lower energy consumption for inference tasks, complementing existing spatial-mode systems. We also investigated femtosecond pulses' nonlinear broadening effects – self-phase modulation and coherent soliton fission – demonstrating their distinct impacts on classification tasks and showcasing broadband frequency generation as a powerful, energy-efficient tool for next-generation computing.
Photonic graph states serve as promising resources in various measurement-based quantum computation and communication protocols, such as quantum repeaters. However, their realization with linear optics poses challenges due to the absence of deterministic photon-entangling gates in such platforms. A potential solution involves leveraging quantum emitters, such as quantum dots or NV centers, to establish entanglement and subsequently transfer it to the emitted photons. The design of a quantum circuit that implements the generation of a graph state within such a framework is highly non-trivial nonetheless. Here, we introduce a generation circuit optimization approach that leverages the concept of local equivalency of graphs and employs graph theoretical correlations to explore alternative, cost-effective circuits. Obtaining a 50% reduction in the use of 2-qubit gates for preparing repeater graph states highlights the potential efficacy of our method.
Quantum technologies harness nonclassical features of particles, here, photons, to develop novel, efficient, and precise devices for information processing applications. Superposition, entanglement, as well as the coherent manipulation of quantum states are at the heart of the second quantum revolution (quantum 2.0) which targets the development of secure cryptographic systems, complex computation protocols, and more. Emerging quantum architectures rely on the realistic implementation of photonic schemes which are scalable, resource-efficient, and compatible with CMOS technologies as well as fiber networks. This work demonstrates current schemes utilized for time-/frequency-bin entanglement generation and processing by leveraging existing telecommunications and integrated photonics infrastructures.
We review our work on implementing integrated QFC sources based on microring resonators for on-chip generation of two- and multi-photon time-bin entangled states, d-level frequency-entangled photon pairs, and multipartite d-level cluster states. We also present our recent progress on telecom-compatible, scalable, time-entangled two-photon qubits using on-chip Mach-Zehnder interferometers (MZI) in combination with spiral waveguides. Both approaches are highly cost-effective, efficient, and practical, since we coherently manipulate the time and frequency modes through standard fiber-linked components that are compatible with off-the-shelf telecommunications infrastructures. Our work paves the way for robust sources and processors of complex photon states for future quantum technologies.
A key challenge in today’s quantum science is the realization of large-scale complex non-classical systems to enable e.g. ultra-secure communications, quantum-enhanced measurements, and computations faster than classical approaches. Optical frequency combs represent a powerful approach towards this, since they provide a very high number of temporal and frequency modes which can result in large-scale quantum systems. Here, we discuss the recent progress on the realization of integrated quantum frequency combs and reveal how their use in combination with on-chip and fiber-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability.
Optical square wave sources are particularly important for applications in high speed signal processing and optical communications. In most realizations, optical square waves are generated by electro-optic modulation, dispersion engineering of mode-locked lasers, polarization switching, or by exploiting optical bi-stability and/or optical delayed feedback in semiconductor diode lasers, as well as vertical-cavity surface-emitting lasers (VCSELs). All such configurations are bulky and cause significant timing jitters. Here we demonstrate the direct generation of optical square waves from a polarization-maintaining figure-eight nonlinear amplifying loop mirror (NALM) configuration that uses an embedded high index glass micro-cavity as the nonlinear element. Such a NALM mimics the behavior of a saturable absorber and has been used to reach passive mode-locking of pico- and even nano-second pulses. In our method, the NALM, including a high-Q micro-ring resonator, acts as an ultra-narrowband spectral filter and at the same time provides a large nonlinear phase-shift. Previously we have demonstrated that such a configuration enables sufficient nonlinear phase-shifts for low-power narrow-bandwidth (~100 MHz FWHM) passive mode-locked laser operation. Here we demonstrate the switching of stable optical square wave pulses from conventional mode-locked pulses by adjusting the cavity properties. In addition, the square wave signal characteristics, such as repetition rate and pulse duration, can be also modified in a similar fashion. The source typically produces nanosecond optical square wave pulses with a repetition rate of ~ 120 MHz at 1550nm. In order to verify the reach of our approach, we compare our experimental results with numerical simulations using a delay differential equation model tailored for a figure-eight laser.
Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.
The on-chip generation of optical quantum states will enable accessible advances for quantum technologies. We demonstrate that integrated quantum frequency combs (based on high-Q microring resonators made from a CMOS-compatible, high refractive-index doped-glass platform) can enable the generation of pure heralded single photons, cross-polarized photon pairs, as well as bi- and multi-photon entangled qubit states over a broad frequency comb covering the S, C, L telecommunications band, with photon frequencies corresponding to standard telecommunication channels spaced by 200 GHz.
Exploiting a self-locked, intra-cavity excitation configuration, a highly-stable source of multiplexed heralded single photons is demonstrated, operating continuously for several weeks with less than 5% fluctuations. The photon bandwidth of 110 MHz is compatible with quantum memories, and high photon purity was confirmed through single-photon auto-correlation measurements. In turn, by simultaneously exciting two orthogonal polarization mode resonances, we demonstrate the first realization of type-II spontaneous FWM (in analogy to type-II spontaneous parametric down-conversion), allowing the direct generation of orthogonally-polarized photon pairs on a chip.
By using a double-pulse excitation, we demonstrate the generation of time-bin entangled photon pairs. We measure qubit entanglement with visibilities above 90%, enabling the implementation of quantum information processing protocols. Finally, the excitation field and the generated photons are intrinsically bandwidth-matched due to the resonant characteristics of the ring cavity, enabling the multiplication of Bell states and the generation of a four-photon time-bin entangled state. We confirm the generation of this four-photon entangled state through four-photon quantum interference.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.