Thyroid segmentation in tracked 2D ultrasound (US) using active contours has a low segmentation accuracy mainly due to the fact that smaller structures cannot be efficiently recognized and segmented. To address this issue, we propose a new similarity indicator with the main objective to provide information to the active contour algorithm concerning the regions that the active contour should continue to expand or should stop. First, a preprocessing step is carried out in order to attenuate the noise present in the US image and to increase its contrast, using histogram equalization and a median filter. In the second step, active contours are used to segment the thyroid in each 2D image of the dataset. After performing a first segmentation, two similarity indicators (ratio of mean square error, MSE and correlation between histograms) are computed at each contour point of the initial segmented thyroid between rectangles located inside and outside the obtained contour. A threshold is used on a final indicator computed from the other two indicators to find the probable regions for further segmentation using active contours. This process is repeated until no new segmentation region is identified. Finally, all the segmented thyroid images passed through a 3D reconstruction algorithm to obtain a 3D volume segmented thyroid. The results showed that including similarity indicators based on histogram equalization and MSE between inside and outside regions of the contour can help to segment difficult areas that active contours have problem to segment.
The segmentation of the thyroid in ultrasound images is a field of active research. The thyroid is a gland of the endocrine system and regulates several body functions. Measuring the volume of the thyroid is regular practice of diagnosing pathological changes. In this work, we compare three approaches for semi-automatic thyroid segmentation in freehand-tracked three-dimensional ultrasound images. The approaches are based on level set, graph cut and feature classification. For validation, sixteen 3D ultrasound records were created with ground truth segmentations, which we make publicly available. The properties analyzed are the Dice coefficient when compared against the ground truth reference and the effort of required interaction. Our results show that in terms of Dice coefficient, all algorithms perform similarly. For interaction, however, each algorithm has advantages over the other. The graph cut-based approach gives the practitioner direct influence on the final segmentation. Level set and feature classifier require less interaction, but offer less control over the result. All three compared methods show promising results for future work and provide several possible extensions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.