KEYWORDS: Elastography, Ultrasonography, Imaging systems, Image quality standards, Signal to noise ratio, Real-time computing, Image quality, Signal processing, Digital signal processing, Graphics processing units
Synthetic aperture (SA) ultrasound imaging system produces highly accurate axial and lateral displacement estimates; however, low frame rates and large data volumes can hamper its clinical use. This paper describes a real-time SA imaging based ultrasound elastography system that we have recently developed to overcome this limitation. In this system, we implemented both beamforming and 2D cross-correlation echo tracking on Nvidia GTX 480 graphics processing unit (GPU). We used one thread per pixel for beamforming; whereas, one block per pixel was used for echo tracking. We compared the quality of elastograms computed with our real-time system relative to those computed using our standard single threaded elastographic imaging methodology. In all studies, we used conventional measures of image quality such as elastographic signal to noise ratio (SNRe). Specifically, SNRe of axial and lateral strain elastograms computed with real-time system were 36 dB and 23 dB, respectively, which was numerically equal to those computed with our standard approach. We achieved a frame rate of 6 frames per second using our GPU based approach for 16 transmits and kernel size of 60 × 60 pixels, which is 400 times faster than that achieved using our standard protocol.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.