The application of modern technologies such as soil moisture sensors (SMS) provide an excellent water management and conservation tool, which reduces daily water use. The overall goal of this project is to employ UAV-based remote sensing technology to estimate bermudagrass performance and quality managed under SMS and ET based irrigation at Cal Poly Pomona’s Turfgrass Center. In addition to the UAV-based remote sensing technology, hand-held spectroradiometer and chlorophyll meter were also used to determine Bermudagrass performance. Data was collected from a UAV equipped with a multispectral sensor along with visual quality ratings and proximal sensor data. General linear model of correlation (p = 0.05) was used to analyze percentage green cover, density, NDVI, and other vegetation indices
In recent years, applied irrigation has been reduced to comply with California’s mandated water use restrictions. In an effort to increase water conservation, employing new technologies such as soil moisture sensors (SMS) in the agriculture system is imperative. The overall goal of this project is to estimate bermudagrass quality, managed under SMS based irrigation scheduling at Cal Poly Pomona’s Center for Turf, Irrigation and Landscape Technology (CTILT). UAV mounted Hyperspectral sensor and hand-held spectroradiometer are being used to determine vegetation indices such as water band index (WBI) and normalized difference vegetation index (NDVI) and are compared with water and chlorophyll content of bermudagrass. The UAV platform used is a multicopter, which is equipped with GPS and autopilots for autonomous flight and data capture over the turfgrass plots. The visual turf quality ratings, remote and proximal sensor data are collected once every two weeks during the growing season. The handheld spectroradiometer is a hyperspectral devise and is used to validate UAV mounted hyperspectral sensor data. A general linear model analysis of variance for a randomized complete block design will be conducted for each date to test SMS based irrigation effect on the visual ratings and clipping yield. Comparisons among visual quality ratings, percentage green cover, NDVI and WBI are analyzed with the general linear model of correlation (Pearson’s). Differences between means were separated by Fisher’s protected least significant difference (p = 0.05).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.