We report effects of controlled humidity in ambient condition on grain boundary potential and charge transport within the grains of Pervoskite films prepared by sequential deposited technique. Grain boundary exhibited variation of their electronic properties with change in humidity level from sample kept inside glove box to 75% RH. X-ray diffraction (XRD) indicates the formation of PbI2 phase with increasing humidity level. The degradation of Pervoskite solar cell is mainly associated with the increase of PbI2 phase with increase in humidity level and hydration of the grain boundaries with the formation of hydrated phases. Spatial mapping of surface potential in the Perovskite film exhibits higher positive potential at grain boundaries compared to the surface of the grains. Grain boundary potential barrier were found to increase from ~35 meV to 80 meV for perovskite film exposed to 75% RH level compared to perovskite film kept inside glove box. Nanoscale current sensing measurement (Cs-AFM) shows that charge transport in perovskit solar cell strongly depends in humidity level. Performances of the solar cell was maximum for 25% humidity with 14.01 %. Transient measurement shows decrease in charge carrier life time and charge transport time with increase in humidity level. Our results show strong correlation between humidity level, electronic grain boundary properties and device performance.
Conjugated polymers are potential materials for photovoltaic applications due to their high absorption coefficient, mechanical flexibility, and solution-based processing for low-cost solar cells. A bulk heterojunction (BHJ) structure made of donor–acceptor composite can lead to high charge transfer and power conversion efficiency. Active layer morphology is a key factor for device performance. Film formation processes (e.g., spray-coating, spin-coating, and dip-coating), post-treatment (e.g., annealing and UV ozone treatment), and use of additives are typically used to engineer the morphology, which optimizes physical properties, such as molecular configuration, miscibility, lateral and vertical phase separation. We will review electronic donor–acceptor interactions in conjugated polymer composites, the effect of processing parameters and morphology on solar cell performance, and charge carrier transport in polymer solar cells. This review provides the basis for selection of different processing conditions for optimized nanomorphology of active layers and reduced bimolecular recombination to enhance open-circuit voltage, short-circuit current density, and fill factor of BHJ solar cells.
Recently, excellent solar cell device performances have been achieved with solution-processed small-molecule donor materials. Small molecules have well defined structures and thus allow better control of self-assembly in the solid state. However, the easy formation of H-type aggregates and lack of strong interactions between nanodomains could limit charge transport, device performance, and long-term stability. We have recently explored the synthesis of ring-protected small molecules (with rings surrounding the center of the molecules), studied the intermolecular interactions in solution and solid state, and conducted preliminary solar cell device fabrications. It has been found that the molecules behave very differently from conventional flat small molecules in both solution and solid states. Proton NMR study of solutions of different concentrations revealed the presence of strong intermolecular interactions as a result of absence or shortage of open-ended alkyl side chains; however, such strong interactions do not lead to precipitation of the molecules even at high concentrations. Excellent films are routinely obtained from the neat small molecules despite the much reduced number of solubilizing groups. The New findings strongly suggest that ring protection is an effective strategy to avoid Haggregation and maintain strong pi-pi interactions simultaneously. Such materials are expected to form head-tail selfassemblies that will open new possibilities for small molecule organic materials. Conceptually, thin films of such materials are potentially more isotropic in charge transport than conventional small molecule and polymer films, a property desirable for photovoltaics and some other optoelectronic applications.
The correlation between the physical properties of spin-casting solvents, film morphology, nanoscale charge transport, and device performance was studied in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) blends, spin cast with two halogenated aromatic solvents: chlorobenzene (CB) and ortho-dichlorobenzene (1,2-DCB). 1,2-DCB-based blends exhibited fine phase separation of ∼10 to 15 nm length scale with ordered self-assembly of P3HT whereas blends spin cast from CB showed coarse phase separation with large isolated clusters of ∼25 to 100 nm of donor- and acceptor-rich regions. Higher solubility of both P3HT and PCBM in 1,2-DCB and a slower drying rate of 1,2-DCB (because of higher boiling point) facilitated self-organization and ordering of P3HT and promoted finer phase separation. Higher local hole mobility in 1,2-DCB-based blend was attributed to efficient hole transport through the ordered network of P3HT chains. Moreover, higher local illuminated current (dark + photocurrent) in 1,2-DCB-based blend suggested efficient diffusion and dissociation of excitons due to finer phase separation. As a consequence, 1,2-DCB-based devices exhibited higher short circuit current density (Jsc), external quantum efficiency and power conversion efficiency in contrast to the CB-based device. It was also observed that the device performance was not limited by light absorption and exciton generation; rather morphology dependent processes subsequent to exciton generation, primarily charge transport to the electrodes, limited device performance.
A thienylsilane molecular layer is self-assembled onto vertically aligned ZnO nanowire templates for promoting in situ electrochemical polymerization of P3HT. The silane functionalization on ZnO surface is investigated using x-ray photoelectron spectroscopy and water contact angle measurements. The silane-based surface modified layer acts as a favorable nucleation site for electrochemical polymerization. We find that the oxidation potential for electrochemical polymerization is obviously decreased compared to that without a surface modifier. The UV-visible absorption in the ZnO nanowire/P3HT film with thienylsilane molecular layer is much stronger than that without surface modification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.