Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are achieved using reactive-ion etching techniques and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The inductively-coupled reactive ion plasma (ICP-RIE) used in the fabrication process to etch the rARSS is anisotropic, and thus well-suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles, for values from 0° to ±30°. Qualifying and quantifying the rARSS performance on curved substrates, such as concave and convex lenses, is required to optimize the fabrication of a desirable AR effect on opticalpower elements. In this work, rARSS was fabricated on fused silica plano-convex and plano-concave lenses, using an optimized ICP-RIE process, to maximize optical transmission in the range from 500 nm to 1100 nm. Results are presented from optical transmission tests of matched sets of varying curvature lenses with rARSS at a wavelength of 633nm. The transmission was measured as a function of radial distance from the apex of each lens, and shows the anisotropic dependence of the etch process. The transmittance profiles between the different sphericity of the tested lenses as well as the matched sets of concave and convex surfaces are compared. The measured angle-of-incidence dependence of planar silica versus silica lenses with rARSS is also presented.
We report results for antireflective surface structures (ARSS) fabricated directly into the surface of optics and lenses which are important as high energy (multi-kW) laser components, including fused silica windows and lenses, YAG crystals and ceramics and spinel ceramics. Very low reflection losses as well as high laser damage thresholds have been measured for optics with ARSS. Progress to scale up the process for large size windows will also be presented..
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.