We previously demonstrated a machine learning based regions-of-interest (ROI) finding tool for X-ray fluorescence microscopy, called XRF-ROI-Finder at the 9-ID beamline in Argonne National Laboratory.1 Bacterial cell treatment type prediction and recommendation for steering experiments were performed via the application of fuzzy k-means clustering algorithm. ROI-Finder takes the fluorescence microscopy images, performs segmentation and detects individual E.coli cells, extracts features for principal component analysis, and ultimately performs label-free clustering for cell treatment type prediction and recommendation for similar cells to perform automatic steering experimentation. In this paper, we assess two additional clustering method, namely hierarchical agglomerative clustering (HAC) and density based spatial clustering of applications with noise (DBSCAN) algorithm. The ROI-Finder software is hosted at https://github.com/aisteer/ROI-Finder.
Applications of X-ray computed tomography (CT) for porosity characterization of engineering materials often
involve an extended data analysis workflow that includes CT reconstruction of raw projection data, binarization, labeling and mesh extraction. It is often desirable to map the porosity in larger samples but the computational challenge of reducing gigabytes of raw data to porosity information poses a critical bottleneck. In this work, we describe algorithms and implementation of an end-to-end porosity mapping code "Tomo2Mesh" that processes raw projection data from a synchrotron CT instrument into a porosity measurement and visualization within minutes on a single high-performance workstation equipped with GPU.
The Illinois Express Quantum Network (IEQNET) is a program to realize metro-scale quantum networking over deployed optical fiber using currently available technology. IEQNET consists of multiple sites that are geographically dispersed in the Chicago metropolitan area. Each site has one or more quantum nodes (Qnodes) representing the communication parties in a quantum network. Q-nodes generate or measure quantum signals such as entangled photons and communicate the results via standard, classical, means. The entangled photons in IEQNET nodes are generated at multiple wavelengths, and are selectively distributed to the desired users via optical switches. Here we describe the network architecture of IEQNET, including the Internet-inspired layered hierarchy that leverages software-defined-networking (SDN) technology to perform traditional wavelength routing and assignment between the Q-nodes. Specifically, SDN decouples the control and data planes, with the control plane being entirely classical. Issues associated with synchronization, calibration, network monitoring, and scheduling will be discussed. An important goal of IEQNET is demonstrating the extent to which the control plane can coexist with the data plane using the same fiber lines. This goal is furthered by the use of tunable narrow-band optical filtering at the receivers and, at least in some cases, a wide wavelength separation between the quantum and classical channels. We envision IEQNET to aid in developing robust and practical quantum networks by demonstrating metro-scale quantum communication tasks such as entanglement distribution and quantum-state teleportation.
Quantum key distribution allows for a provably secure transmission of cryptographic keys over an optical channel. Encoded polarization states or time-bin degree of freedom have been used for successful demonstrations. However, photon losses in long fibers, slow single photon detectors, and detector dark counts significantly limit the overall bit rate. Improving key throughput and reducing the overhead of key reconciliation remain as major challenges. Methods which utilize multiple time bins allow for multiple key bits to be encoded in a single photon, thus increasing the fidelity of transmitted keys and decreasing the overhead of key reconciliation in real-world conditions. Previous implementations of these methods required that Alice and Bob share a time reference by sharing a dedicated classical channel used for synchronization. This work presents a technique that allows two parties to exchange time-bin encoded photons without the need for synchronized time references. Our technique uses a framing protocol which allows Alice to encode a time reference along with a key which is determined by Alice before transmission. Security can be achieved by monitoring the visibility of a pair of Franson interferometers, using decoy pulses and measuring the round trip time between Alice and Bob. The bit rate of this technique is limited only by the recovery time of the detector and the speed of the modulation electronics. We experimentally demonstrate a raw bit rate of 5Mb/s over an optical channel with 55dB of loss, which is competitive with current research. We also demonstrate absolute timing synchronization with an accuracy of 20ps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.