Epsilon-near-zero (ENZ) materials also defined as near zero permittivity materials have attracted much attention for their peculiar physical features. In this work, we study analytically and numerically the emission decay rate of a hybrid system combining a vertical dipolar emitter in the presence of ENZ spherical Nano-particle. We examine the asymptotic behavior of the fluorescence decay rate in the near field of the ENZ spherical nanoparticle. We demonstrate the competition between the radiative and non-radiative channels. Our results show that a fundamental understanding of multiple contributions is critical to control the fluorescence decay rate in its molecular environment.
Nanoscale amplification of non-linear processes in solid-state devices opens novel applications in nano-electronics, nano-medicine or high energy conversion for example. Coupling few nano-joules laser energy at a nanometer scale for strong field physics is demonstrated. We report enhancement of high harmonic generation in nano-structured semiconductors using nanoscale amplification of a mid-infrared laser in the sample rather than using large laser amplifier systems. Field amplification is achieved through light confinement in nano-structured semiconductor 3D waveguides. The high harmonic nano-converter consists of an array of zinc-oxide nanocones. They exhibit a large amplification volume, 6 orders of magnitude larger than previously reported [1] and avoid melting observed in metallic plasmonic structures. The amplification of high harmonics is observed by coupling only 5-10 nano-joules of a 3.2 µm high repetition-rate OPCPA laser at the entrance of each nanocone. Harmonic amplification (factor 30) depends on the laser energy input, wavelength and nanocone geometry [2].
[1] Vampa et al., Nat. Phys. 13, 659–662 (2017).
[2] Franz et al., arXiv:1709.09153 [physics.optics] (2017)
Graphene is a remarkable material, a monolayer of carbon atoms bonded together in a honeycomb structure that exhibits extraordinary electronic and optoelectronic properties; such as a zero band gap energy, high electron mobility and ultrahigh mechanical strength. The electronic properties of graphene can lead to nonlinear optical processes such as high harmonic generation. Here, we investigate high harmonic generation in several graphene configurations. We first report on the observation of harmonic generation in monolayer graphene on a quartz substrate. We measured up to the ninth harmonic (233 nm wavelength) from graphene of a mid-infrared femtosecond laser, whose wavelength is 2.1 µm, pulse energy around 6 nJ, pulse duration 85 fs, and repetition rate 18 MHz. Our findings confirm recent observations [1]. We then report for the first time on the observation of harmonics from free-standing graphene supported on TEM grids. Free-standing graphene, in contrast to graphene on a substrate behaves differently; mainly due to the lack of its interaction with the substrate which alters its band gap. We will present major trends of high harmonic generation dependence with laser polarization, intensity and a study on damages issues [2].
[1] Yoshikawa et al., Science 356, 736_738 (2017)
[2] Nicolas et al. submitted.
In this work, a trilayer graphene is used as a thin non dielectric spacer with a high index of refraction, between Au film
and Au NPs. Encouraged by the sharpness of the localized surface plasmon resonance LSPR induced by this system, we
performed sensitivity measurements to refractive index change in the surrounding medium of the sensor. The presence of
graphene led to both higher sensitivity and sharper full width at half maximum FWHM and thus higher figure of merit
FOM (2.8) compared to the system without graphene (2.1).
We discuss here different strategies for making arrays of Au nanoparticles using copolymer templates. Top-down and
bottom-up routes are considered and the optical properties of as-prepared Au nanoparticles are discussed and compared
to numerical simulations. Potential for applications such as biosensors or strain sensors is also assessed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.