The Space Interferometry Mission (SIM) is fundamentally a one-dimensional instrument with a 15-degree field-of-regard. Mission objectives require a global reference grid of thousands of well-understood stars with positions known to 4 microarcseconds which will be used to establish the instrument baseline vector during
scientific observations. This accuracy will be achieved by frequently observing a set of stars throughout the mission and performing a global fit of the observations to determine position, proper motion and parallax for each star. Each star will be observed approximately 200 times with about 6.5 stars per single instrument field on the sky. We describe the nature of the reference grid, the candidate objects, and the results of simulations demonstrating grid performance, including estimates of the grid robustness when including effects such as instrument drift and possible contamination of the grid star sample by undetected binaries.
This paper summarizes two different strategies envisioned for calibrating the systematic field dependent biases present in the Space Interferometry Mission (SIM) instrument. The Internal Calibration strategy is based on pre-launch measurements combined with a set of on-orbit measurements generated by a source internal to the instrument. The External Calibration strategy uses stars as an external source for generating the calibration function. Both approaches demand a significant amount of innovation given that SIM's calibration strategy requires a post-calibration error of 100 picometers over a 15 degree field of regard while the uncalibrated instrument introduces tens to hundreds of nanometers of error. The calibration strategies are discussed in the context of the wide angle astrometric mode of the instrument, although variations on both strategies have been proposed for doing narrow angle astrometry.
Like all astrometric instruments, the Space Interferometry Mission (SIM) suffers from field-dependent errors requiring calibration. Diffraction effects in the delay line, polarization rotations on corner cubes, and beam walk across imperfect optics, all contribute to field-distortion that is significantly larger than is acceptable. The bulk of the systematic error is linear across the field - that is, it results in magnification and rotation errors. We show that the linear terms are inconsequential to the performance of SIM because they are inseparable from baseline length and orientation errors. One approach to calibrating the higher-order terms is to perform 'external' calibration; that is, SIM periodically makes differential measurements of a field of bright stars whose positions are not precisely known. We describe the requirements and constraints on the external calibration process and lay the groundwork for a specific procedure detailed in accompanying papers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.