This paper addresses the use of orthogonal polynomial basis transform in video classification due to its multiple advantages, especially for multiscale and multiresolution analysis similar to the wavelet transform. In our approach, we benefit from these advantages to reduce the resolution of the video by using a multiscale/multiresolution decomposition to define a new algorithm that decomposes a color image into geometry and texture component by projecting the image on a bivariate polynomial basis and considering the geometry component as the partial reconstruction and the texture component as the remaining part, and finally to model the features (like motion and texture) extracted from reduced image sequences by projecting them into a bivariate polynomial basis in order to construct a hybrid polynomial motion texture video descriptor. To evaluate our approach, we consider two visual recognition tasks, namely the classification of dynamic textures and recognition of human actions. The experimental section shows that the proposed approach achieves a perfect recognition rate in the Weizmann database and highest accuracy in the Dyntex++ database compared to existing methods.
Geometry and texture image decomposition is an important paradigm in image processing. Following to Yves Meyer works based on Total Variation (VT), the decomposition model has known a renewed interest. In this paper, we propose an algorithm which decomposes color image into geometry and texture component by projecting the image in a bivariate polynomial basis and considering the geometry component as the partial reconstruction and the texture component as the remaining part. The experimental results show the adequacy of using our method as a texture extraction tool. Furthermore, we integrate it into a dynamic texture classification process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.