B-mode ultrasound images are characterized by speckle artefact, which results from interference effects between returning echoes, and may make the interpretation of images difficult. Consequently, many methods have been developed to reduce this problematic feature.
One widely used method, popular in both medical and non-destructive-testing applications, is a 1D method known as Split Spectrum Processing (SSP), or also as Frequency Diversity. Although this method was designed for speckle reduction applications, the final image experiences a resultant loss of resolution, impinging a trade-off between speckle reduction and resolution loss. In order to overcome this problem, we have developed a new method that is an extension of SSP to 2D data using directive filters, called Split Phase Processing (SPP). Instead of using 1D narrow band-pass filters as in the SSP method, we use 2D directive filters to split the RF ultrasound image in a set of wide band images with different phases.
The use of such filters substantially avoids the resolution loss usually associated with SSP for speckle reduction, because they effectively have the same bandwidth as the original image.
It is concluded that the Split Phase Processing, as introduced here, provides a significant improvement over the conventional Split Spectrum Processing.
A method for measuring the directivity function of transient fields with a new type of hydrophone that can be located at any convenient distance from the transducer is presented. Fields from planar and focused transducers, for both continuous wave and pulsed excitation, are measured via the new method, and the results compared against conventional measurements as well as against theoretical predictions. The directivity function for pulsed fields is best expressed as a complex directivity spectrum, and images of this fundamental transducer field characteristic are shown to encode a number of unexpected features. The definition and measurement of the directivity function, is not dependent on continuous wave or far-field conditions, and laboratory implementation of the theory is via a new type of hydrophone, with some unusual properties. It is concluded that precise and unambiguous measurement of transducer directivity patterns are straight forward to perform provided a relatively simple, but novel, technique is used. Images of the informative directivity spectrum may be obtained with ease.
In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.
The diffraction in the acoustic field of an ultrasound transducer can be modeled as the result of the interference of edge and plane waves generated from the periphery and the center of the piezoelectric element, respectively. Our objective in developing ultrasound transducers with apodized piezoelectric ceramic discs was to generate acoustical fields with reduced edge waves interference. Transducers were built with apodized ceramic discs (polarized more intensively in the central region than in the edges) and their mapped acoustic fields showed a distinct pattern when compared to those of conventional transducers. A polynomial equation describing the nonlinear poling field intensity, was used with the Rayleigh equation to simulate the nonuniform vibration amplitude distribution generated by the apodized transducers. Simulated acoustic fields were compared to experimental field mappings. The results of simulations and experimental tests showed reduction in the lateral spreading of acoustic fields produced by apodized transducers, compared to those produced by conventional transducers. The reduced presence of the lateral lobes in the apodized acoustic field is due to the minimized vibration of the disc periphery. The numerical and experimental results were in good agreement and showed that it was possible to reduce acoustic field diffraction through nonlinear polarization of the piezoelectric element.
KEYWORDS: Ultrasonography, Transducers, Signal attenuation, Bone, Ultrasonics, Wave propagation, Transmitters, Dual energy x-ray absorptiometry, Minerals, Control systems
We have developed an equipment using ultrasound transducers to help in the diagnosis of osteoporosis. The equipment consists of an X-Y axes displacement system controlled by a microcomputer and uses two ultrasound transducers in opposite sides to inspect the calcaneus region of the patient. We have used two pairs of transducers with 500 kHz and 1 MHz central frequencies. Each pair of transducers was fixed in the X-Y displacement system submerged in a small water tank with a support for the foot of the patient. The transmitter was excited with pulses of 400 - 600 kHz or 800 - 1200 kHz and the ultrasound waves propagating through the bone in the calcaneus region are received by the opposite transducer, amplified and acquired in a digital oscilloscope. The data are transferred to the microcomputer and the ultrasound attenuation and the ultrasound transmission velocity are determined. The system was tested in patients, selected from a group that had already been diagnosed using a DEXA equipment. The results showed that there is a decrease in the ultrasound transmission velocity and the ultrasound attenuation in osteoporotic patients when compared to healthy patients of the same sex and age group. The conclusion is that ultrasound attenuation and the transmission velocity in the calcaneus region may be used as parameters in the evaluation of osteoporosis using our new system.
A new method for computing images of transient ultrasound fields from transducers of arbitrary shape is developed. For simplicity, only transducers with axial symmetry are considered here, but the extension to square and rectangular radiators is straightforward. The more general case may be treated by the same methods. The method is based on the use of the directivity spectrum -- which can be shown to be a generalization of the angular spectrum. It is ideally suited, however, for application to transient fields, and the formalism contains no evanescent waves. Images of pulses over extensive ranges from a variety of transducers are shown. In particular, it is shown that the transient field from a strongly-focused bowl transducer may be readily calculated, without the approximations that are necessary when using the traditional Tupholme-Stepanishen method. The simulation method is powerful and computationally efficient. It is considerably faster than methods used up to now, and may be applied to the computation of fields that are problematic for standard methods. The final output shown here is a high-quality 'snapshot' of the field, at various distances from the transducer face. Phase of the field is shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.