This paper will focus on next-generation inorganic scintillation detectors that could be used to study neutral emission from the high-energy Sun. Recent developments in detector technology have yielded candidate materials for future heliophysics missions, namely elpasolites (Cs2LiYCl6:Ce – CLYC and Cs2LiLaBr6:Ce – CLLB). At a modest cost, these detectors yield superior spectroscopic performance compared to previously used materials (NaI:Tl and CsI:Tl). Additionally, elpasolites can detect and measure thermal to fast (<10 MeV) neutrons, simultaneously with γ rays. In the following sections, we discuss: the importance for measuring neutral emission from the Sun, laboratory performance of candidate scintillators and novel light readout devices, a proposed instrument concept, and the expected response to a γ-ray line-producing and neutron-producing solar flares from the vantage points of 1 AU, 0.3 AU, and 0.04 AU.
The SIRI line of instruments is designed to space-qualify new space-based, gamma-ray detector technology for Department of Defense (DoD) and astrophysics applications. SIRI-2’s primary objective is to demonstrate the performance of europium-doped strontium iodide (SrI2:Eu) gamma-ray detection technology with sufficient active area for DoD operational needs. Secondary scientific objectives include understanding the internal background of SrI2:Eu in the space radiation environment, and studying transient phenomena, such as solar flares. The primary detector array of the SIRI instrument consists of seven hexagonal europium-doped strontium iodide (SrI2:Eu) scintillation detectors 3.81 cm by 3.81 cm, with a combined active area of 66 cm2. SIRI-2’s primary detectors have an energy resolution of ~4% at 662 keV. SIRI-2 is expected to operate in the high gamma-ray background of a geosynchronous orbit and the instrument includes a number of features to both passively and actively suppress the unique background of the outer Van Allen belts. Construction and environmental testing of the SIRI-2 instrument has been completed, and it is currently awaiting integration onto the spacecraft bus. The expected launch date is Aug 2020 onboard the Space Test Program’s STPSat-6.
Conference Committee Involvement (2)
Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII
1 August 2021 | San Diego, California, United States
Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXII
25 August 2020 | Online Only, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.