Quaternary compound semiconductor Cd0.9Zn0.1Te1-xSex (CZTS) is emerging as the next generation room-temperature detector for radiation spectroscopy and imaging. CZTS is grown by inclusion of Se in small amount (2-3 at. %) in the CdZnTe (CZT) matrix during the crystal growth. Travelling heater method (THM) and Bridgman method (BM) grown CZTS ingots have shown high degree of axial and radial compositional homogeneity leading to crystal growth yield higher than 90% unforeseen in CZT. While the conventional growth methods produce large volume detector grade crystals, the achievable growth rate is typically low – 1-2 mm/day for THM and 1-2 mm/hr for BM. Vertical gradient freeze (VGF) method is an alternative growth method that can deliver much higher growth rates while maintaining the electronic quality of the crystals. We report an electron drift mobility of 1245 cm^2/V/s, measured in a VGF-grown Cd0.9Zn0.1Te0.97Se0.03 (CZTS) single crystal using a time-of-flight alpha spectroscopic method, which is 1.5 times higher than that reported for state-of-the-art CZTS crystals. A mobility-lifetime (μτ) product of ~1x10^-3 cm^2/V was calculated using a single polarity Hecht plot. Photo-induced deep level transient spectroscopy (PICTS) revealed the presence of several charge trapping centers in the temperature scan range 80 - 450 K. The study correlates the effect of the trap parameters on the performance of room-temperature gamma-ray detectors grown using the VGF method.
Ni/Y2O3/4H-SiC metal-oxide-semiconductor (MOS) structure has been realized on 20 μm thick 4H-SiC epitaxial layers by depositing 40 nm thick Y2O3 layers through pulsed laser deposition and using nickel as the gate contact. 4H-SiC based MOS structures with thin oxide layers are being considered as novel detector structures for ionizing radiation. Y2O3 being a wide bandgap (5.5 eV) and high-𝑘 dielectric (𝑘 = 14-16) is beneficial to lower the junction leakage current and increasing the bias voltage limit. The current-voltage (I-V) characteristics recorded for the fabricated MOS devices revealed excellent rectification properties and a very low leakage current density of 80 pA/cm2 at a gate bias of -500 V. The Mott-Schottky plot obtained from high frequency (1 MHz) capacitance-voltage (C-V) measurement revealed a linear trend as observed in Ni/4H-SiC Schottky barrier detectors. A built-in potential of ≈2.0 V has been calculated from the C-V characteristics. The radiation detection properties of the MOS detectors have been assessed through pulse height spectroscopy using a 241Am alpha particle source. The detectors revealed a well-defined peak in the pulse height spectrum with an energy resolution of 1.6% and a charge collection efficiency (CCE) of 82% at 0 V applied bias (self-biased mode) for the 5486 keV alpha particles. The energy resolution and the charge collection efficiency were seen to improve further with increased gate bias. A CCE of 1.0 and an energy resolution of 0.4% has been observed when the MOS detector was biased at -50 V. A very long hole diffusion length of 56 μm has been calculated using a drift-diffusion model and the variation of experimentally obtained CCE with bias voltage. Such long hole diffusion length and the high built-in potential has led to the highefficiency detection performance in self-biased mode. Capacitance-mode deep level transient spectroscopy revealed the presence of deep level trap centers commonly observed in 4H-SiC epilayers with trap concentrations similar to that has been observed in our previous devices.
Thick 4H-SiC epitaxial layers are essential for high-resolution detection of x- and gamma-rays in harsh environment. In this work, we have fabricated high-resolution Ni/n-4H-SiC Schottky barrier radiation detectors on 250 μm epitaxial layers, the highest thickness ever reported. Capacitance-voltage (C-V) measurements showed a low-carrier concentration of ≈2 × 1014 cm-3 which based on simulations of the electric field allow the detectors to be fully depleted without break down. Current-voltage (I-V) characteristics displayed low leakage currents of < 1 nA up to − 800 V. To predict how the leakage current will grow at the large biases needed to fully deplete the detectors (at ~ 10 kV), the barrier lowering was evaluated from the detectors’ ln J/Em vs. E1/2m plots. Several detectors displayed scaling factors ≈ 2 or greater suggesting that leakage current should remain low even at extreme bias. Pulse height spectrometry using 5486 keV alpha particles showed a resolution of < 0.5 % full width half maximum (FWHM). From the charge collection efficiency vs. applied bias characteristics, the minority carrier diffusion length was found to be >10 μm. Both the long minority carrier diffusion length and high resolution were correlated to the low concentration of lifetime killing defects Z1/2 and EH6/7 (both associated with different charge states of carbon vacancy) found in the detector’s DLTS spectra
Silicon carbide (SiC) is the only wide-bandgap semiconductor to possess native oxide layer thus favoring efficient fabrication of metal-oxide-semiconductor (MOS) devices. 4H-SiC MOS structure has recently been demonstrated as improved radiation detector compared to the conventional Schottky barrier architecture. We report the fabrication of vertical Au/SiO2/n-4H-SiC MOS capacitors for radiation detection, by dry-oxidation of 20 μm thick n-type 4H-SiC epitaxial layer in air at 1000°C. Charge-carrier traps (defects) are known to limit the performance of semiconductor devices. In order to characterize the defects, capacitance mode deep level transient spectroscopy (C-DLTS) was carried out. Apart from regular electron-traps e.g., Ti-impurity and Z1/2 sites, we have also observed the carbon-interstitial related hole traps HK3. While studying defect centers in these devices using a filling pulse peaking to 0 V from a quiescent reverse gate voltage VG = -4 V, we observed a robust positive peak centered around 650 K. Positive peaks in C-DLTS scan indicates minority-carrier trapping, although above-mentioned type of filling pulses does not populate minority-carrier trap centers normally. The activation energy of the observed trap, most likely a carbon vacancy (HK3), was calculated to be 1.27 eV above the valence band edge.
We report the implementation of a deep convolutional neural network to train a high-resolution room-temperature CdZnTeSe based gamma ray spectrometer for accurate and precise determination of gamma ray energies for radioisotope identification. The prototype learned spectrometer consists of a NI PCI 5122 fast digitizer connected to a pre-amplifier to recognize spectral features in a sequence of data. We used simulated preamplifier pulses that resemble actual data for various gamma photon energies to train a CNN on the equivalent of 90 seconds worth of data and validated it on 10 seconds worth of simulated data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.