This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars.
ACCESS is one of four medium-class mission concepts selected for study in 2008-9 by NASA's Astrophysics Strategic
Mission Concepts Study program. ACCESS evaluates a space observatory designed for extreme high-contrast imaging
and spectroscopy of exoplanetary systems. An actively-corrected coronagraph is used to suppress the glare of diffracted
and scattered starlight to contrast levels required for exoplanet imaging. The ACCESS study considered the relative
merits and readiness of four major coronagraph types, and modeled their performance with a NASA medium-class space
telescope. The ACCESS study asks: What is the most capable medium-class coronagraphic mission that is possible with
telescope, instrument, and spacecraft technologies available today? Using demonstrated high-TRL technologies, the
ACCESS science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of
those for exozodiacal dust to the level of 1 zodi at 3 AU. Coronagraph technology developments in the coming year are
expected to further enhance the science reach of the ACCESS mission concept.
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and
demonstrating, in hardware, the future technologies of wavefront sensing and control algorithms for active optical
systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a
dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront
sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate active optical
devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed
optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware
integrations and tests.
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer
(TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like
planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress
with each of the testbeds is summarized.
Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling
research for the Terrestrial Planet Finder Interferometer has explored several interferometer architectures at
the Jet Propulsion Laboratory (JPL). The most recent efforts have focused on an architecture which
employs a geometric field flip to achieve the necessary π phase delay in the interferometer. The periscope
design currently in use allows for a completely achromatic phase flip. Deep interferometric nulling
requires optical path stability, precision optical alignment, intensity balancing, and dispersion correction.
This paper will discuss recent efforts to implement a precision optical alignment, stabilize the
interferometer environment, implement optical path metrology, control intensity balance, and compensate
for dispersion introduced by beamsplitter mismatch.
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer
(TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like
planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress
with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability
of possible reduced-scope mission concepts are also presented.
Spatial filtering is necessary to achieve deep nulls in optical interferometer and single mode infrared fibers can serve as
spatial filters. The filtering function is based on the ability of these devices to perform the mode-cleaning function: only
the component of the input field that is coupled to the single bound (fundamental) mode of the device propagates to the
output without substantial loss. In practical fiber devices, there are leakage channels that cause light not coupled into
the fundamental mode to propagate to the output. These include propagation through the fiber cladding and by means
of a leaky mode. We propose a technique for measuring the magnitude of this leakage and apply it to infrared fibers
made at the Naval Research Laboratory and at Tel Aviv University. All measurements are performed at 10.5 μm
wavelength.
This paper reviews recent progress with technology being developed for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. TPF-I is in the early phase of its development. The science requirements of the mission are described along with the current design of the interferometer. The goals of the nulling and formation-flying testbeds are reviewed. Progress with TPF-I technology milestones are highlighted.
The next generation of adaptive optics (AO) systems, often referred to as extreme adaptive optics (ExAO), will use higher numbers of actuators to achieve wavefront correction levels below 100 nm, and so enable a host of new observations such as high-contrast coronagraphy. However, the number of potential coronagraph types is increasing rapidly, and selection of the most advantageous coronagraph is subject to many factors. Here it is pointed out that experiments in the ExAO regime can already be carried out with existing hardware, by using a well-corrected subaperture on an existing telescope. For example, by magnifying a 1.5 m diameter off-axis subaperture onto the AO system's deformable mirror (DM) on the Palomar Hale telescope, we have recently achieved stellar Strehl ratios as high as 92% to 94%, corresponding to wavefront errors of 85 - 100 nm. Using this approach, a wide variety of ExaO experiments can thus be carried out well before "next generation" ExAO systems are deployed on large telescopes. The potential experiments include infrared ExAO imaging and performance optimization, a comparison of coronagraphic approaches in the ExAO regime, visible wavelength AO, and predictive AO.
Direct detection of planets around nearby stars requires the development of high-contrast imaging techniques, because of their very different respective fluxes. We thus investigated the innovative coronagraphic approach based on the use of a four-quadrant phase mask (FQPM). Simulations showed that, combined with high-level wavefront correction on an unobscured off-axis section of a large telescope, this method allows high-contrast imaging very close to stars, with detection capability superior to that of a traditional coronagraph. A FQPM instrument was thus built to test the feasibility of near-neighbor observations with our new off-axis approach on a ground-based telescope. In June 2005, we deployed our instrument to the Palomar 200-inch telescope, using existing facilities as much as possible for rapid implementation. In these initial observations, using data processing techniques specific to FQPM coronagraphs, we reached extinction levels of the order of 200:1. Here we discuss our simulations and on-sky results obtained so far.
Direct detection of planets around nearby stars requires the development of high-contrast imaging techniques, because of their very different respective fluxes. This led us to investigate the new coronagraphic approach based on the use of a four-quadrant phase mask (FQPM). Combined with high-level wavefront correction on an unobscured off-axis section of a large telescope, this method allows high-contrast imaging very close to stars. Calculations indicate that for a given ground-based on-axis telescope, use of such an off-axis coronagraph provides a near-neighbor detection capability superior to that of a traditional coronagraph utilizing the full telescope aperture. A near-infrared laboratory experiment was first used to test our FQPM devices, and a rejection of 2000:1 was achieved. We next built an FQPM instrument to test the feasibility of near-neighbor observations with our new off-axis approach on a ground-based telescope. In June 2005, we deployed our instrument to the Palomar 200-inch telescope, using existing facilities as much as possible for rapid implementation. In these initial observations, stars were rejected to about the 100:1 level. Here we discuss our laboratory and on-sky experiments, and the results obtained so far.
The Terrestrial Planet Finder Interferometer Project (TPF-I) has set for itself a host of challenging technical milestones along its path to demonstrating the feasibility of infrared nulling for planet detection. Our activities are focused solely upon the experimental demonstration that deep nulling in the mid-IR over a wide bandpass can be accomplished. Specifically, we have the near-term goal of demonstrating a contrast of 10-6 at 10 μm with a 25% spectral bandwidth. To meet these goals, several areas of technical development are required. These include: single-mode infrared fibers, bright infrared sources, laser path-length and tip/tilt metrology, and improvements to null detection. Progress in each of these areas of technical development will be reviewed as well as their impact on the overarching technical milestones.
Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL). Three architectures have been identified as having promise for achieving deeper broadband IR null depths. Previous nulling research concentrated on layouts using dispersive elements to achieve a quasi-achromatic phaseshift across the passband. However, use of a single glass for the dispersive phase shift method inherently limits the nulling bandwidth. JPL is researching use of multiple glass types to increase null depth and bandwidth. In order to pursue nulls over much broader wavelength regions, nondispersive interferometer architectures can be employed. Toward this end, JPL has been researching two reflective architectures as nulling interferometers. The key enabling technology for this and other nondispersive field flip architectures is single mode spatial filtering devices. We have obtained results with both pinhole spatial filtering and single mode fibers.
By the middle of 2006, the Interferometry Technology development program for NASA's Terrestrial Planet Finder (TPF) Mission has the goal of demonstrating deep and stable interferometric nulling of broadband Mid-IR thermal radiation under conditions that are traceable to the expected on-orbit conditions. Specifically, the task is to demonstrate null levels of 10-6, with a 50% bandwidth centered at 10 μm, with null stabilities of 10-7 all at cryogenic temperatures for observational periods of a couple of hours. The Achromatic Nulling activity at JPL addresses this concern in two testbeds: the warm nulling testbed and the cryonulling testbed. The warm nulling testbed will demonstrate the physics of nulling broadband thermal sources in an environment that is conducive to efficient research. We'll explore nulling techniques, optical-mechanical alignment methods, motion control, and path-length metrology for a single beam interferometer, as well as preliminary planet detection techniques. Ultimate nulling capabilities under conditions that are more flight-like will be demonstrated in the cryogenic nulling testbed. Knowledge gained from operation at room temperature will be applied to the cryogenic experiment where we face the additional challenges of extreme temperatures, cryogenic actuators, component survivability and fluxes that are within an order of magnitude of expected flux levels on orbit. Concurrently, we will develop a low flux mid-IR camera that will allow us to measure the nulls at these faint photon fluxes. This talk will review this development activity and will include recent nulling experimental results and plans for future work.
Testing in a non-null manner causes the test and reference rays in the interferometer to follow different optical paths through the system. The retrace errors generated by this difference are test dependent and must be calibrated independently for each test piece. Optical design software can be used to perform reverse optimization of the interferometer and data. An iterative reverse optimization process has been developed which eliminates weighting sensitivity and improves optimization efficiency. However, implementation of reverse optimization generates constraints on the interferometer design. These include constraints on lens parameters, system apertures, and component verification considerations. A Mach-Zehnder interferometer has been built for non-null transmitted aspheric wavefront testing. The large aspheric departures and steep wavefront slopes are detected and reconstructed using Sub-Nyquist interferometry (SNI). Experiments on several test parts were performed to verify the iterative reverse optimization process and extend the use of SNI to non-rotationally symmetric aspheric wavefronts. Wavefront departures up to 200λ were characterized to λ/6 PV and λ/47 rms. The reverse optimization process was shown to remove up to 25λ of induced aberration from an aspheric measurement. The results indicate potential for application of the iterative method and its associated design constraints to routine aspheric testing.
Researches have suggested several techniques (ie.: pupil masking, coronography, nulling interferometry) for high contrast imaging that permit the direct detection and characterization of extrasolar planets. Our team at JPL, in previous papers, has described an instrument that will combine the best of several of these techniques: a single aperture visible nulling corograph. The elegant simplicity of this design enables a powerful planet-imaging instrument at modest cost. The heart of this instrument is the visible light nulling interferometer for producing deep, achromatic nulls over a wide optical band pass, and a coherent array of single mode optical fibers 2 that is key to suppressing the level of scattered light. Both of these key components are currently being developed and have
produced intial results. This paper will review, in detail, the design of the nulling interferometer experiment and review the latest experimental results. These results illustrate that we are well on our way to developing the fundamental components necessary for planned mission. Likewise, our results demonstrate that the current nulling levels are already consistent with final requirements.
Nulling interferometry shows promise as a technique enabling investigation of faint objects such as planets and exo-zodiacal dust around nearby stars. At Jet Propulsion Laboratory, a nulling beam combiner has been built for the Terrestrial Planet Finder project and has been used to pursue deep and stable narrowband nulls. We describe the design and layout of the modified Mach Zehnder TPF nuller, and the results achieved in the laboratory to date. We report stabilized nulls at about the 10-6 level achieved using a CO2 laser operating at 10.6 μm, and discuss the alignment steps needed to produce good performance. A pair of similar nullers has been built for the Keck Observatory, for planned observations of exo-zodiacal dust clouds. We also show briefly a result from the Keck breadboard experiments: passively stabilized nulls centered around 10.6 micron of about 2 10-4 have been achieved at bandwidths of 29%.
The basic problem associated with aspheric testing without the use of null optics is to obtain increased measurement range while maintaining the required measurement accuracy. Typically, the introduction of a custom-designed and fabricated null corrector has allowed the problem of aspheric testing to be reduced to that of spherical testing. Shack-Hartmann wavefront sensor have been sued for adaptive optics, but have seen little application in optical metrology. We will discus the use of a Shack-Hartmann wavefront sensor as a means of directly testing wavefronts with large aspheric departures. The Shack-Hartmann sensor provides interesting tradeoffs between measurement range, accuracy and spatial resolution. We will discus the advantages and disadvantages of the Shack-Hartmann wavefront sensor over more conventional metrology tests. The implementation of a Shack-Hartmann wavefront sensor for aspheric testing will be shown.
The basic problem associated with aspheric testing without the use of null optics is to obtain increased measurement range while maintaining the required measurement accuracy. Typically, the introduction of a custom-designed and fabricated null corrector has allowed the problem of aspheric testing to be reduced to that of spherical testing. Shack-Hartmann wavefront sensors have been used for adaptive optics, but have seen little application in optical metrology. We will discuss the use of a Shack-Hartmann wavefront sensor as a means of directly testing wavefronts with large aspheric departures. The Shack-Hartmann sensor provides interesting tradeoffs between measurement range, accuracy and spatial resolution. We will discuss the advantages and disadvantages of the Shack-Hartmann wavefront sensor over more conventional metrology tests. The implementation of a Shack-Hartmann wavefront sensor for aspheric testing will be shown.
Conformal domes, designed with a high aspect ratio for aerodynamic purposes, present design, fabrication, and test difficulties to the optical engineer. Traditional domes have been spherical to facilitate fabrication and testing of the domes and the design of imaging optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.