We propose optical injection locking (OIL) injecting for the first-time a hybrid InP-Si3N4 laser source using another laser integrated on the same chip for microwave generation through optical heterodyning in Ka-, Q- and V-bands. A study of the drift exhibited by the devices will be performed as key parameter of lasers. The amount of free-running drift exhibited by the lasers and a way to minimize as much as possible. According to the measured drift that goes in the worst case up to 520 MHz. However, the electric drift of the beat-note RF signal keeps below 50 MHz thanks of being thermally stabilize over the same conditions. To eliminated the drift, an optical injection locking of one InP/Si3N4 hybrid integrated laser have been done by injecting another hybrid laser integrated on the same chip for the first time. We have demonstrated a locking range demonstrated a locking range of 1.86 GHz.
In this paper, we present a mode-locked laser photonic integrated chip developed within a multi-project wafer run at an InP-based generic foundry. The 1.66-mm-long Fabry-Perot cavity is formed with two on-chip multimode interence reflectors in which four gain sections and three saturable absorbers equally divide the cavity in four. The fourth harmonic colliding pulse configuration supports pulse train generation of 100 GHz, corresponding to 0.8-nm mode spacing. Autocorrelation traces exhibit the ultrafast pulse widths as short as 0.5 ps. Terahertz dual-mode spectra are presented as well.
A photonic integrated circuit developed in a generic foundry platform for continuously tunable microwave generation is presented. On this chip, two single-wavelength DFB laser diodes generate a two-tone emission through one optical waveguide coupler as combiner. The two-tone emission spectrum with >50-dB suppression ratio exhibits a continuous wavelength offset tunability up to ~4.3 nm, corresponding to 0.55-THz. With an external photodiode, a RF beat note at 10 GHz is experimentally demonstrated..
We report on a record broad 3-dB bandwidth of 14 nm (~1.8 THz around 1532 nm) optical frequency comb generated
from a passively mode-locked quantum-well (QW) laser in the form of photonic integrated circuits through an InP
generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by
two on-chip reflectors incorporating intracavity phase modulators followed by an out-of-cavity SOA as booster. Under
certain operating conditions, an ultra-wide spectral bandwidth is achieved along with an autocorrelation trace confirming
the mode locking nature exhibiting a pulse width of 0.35 ps. The beat note RF spectrum has a linewidth of sub-MHz and
35-dB SNR.
A comparative study of two different Photonic Integrated Circuits (PICs) structures for continuous-wave generation of millimeter-wave (MMW) signals is presented, each using a different approach. One approach is optical heterodyning, using an integrated dual-wavelength laser source based on Arrayed Waveguide Grating. The other is based on ModeLocked Laser Diodes (MLLDs). A novel building block -Multimode Interference Reflectors (MIRs) – is used to integrate on-chip both structures, without need of cleaved facets to define the laser cavity. This fact enables us to locate any of these structures at any location within the photonic chip. As will be shown, the MLLD structure provides a simple source for low frequencies. Higher frequencies are easier to achieve by optical heterodyne. Both types of structures have been fabricated on a generic foundry in a commercial MPW PIC technology.
A cost-effective solution to provide higher data rates in wireless communication system is to push carrier wave
frequencies into millimeter wave (MMW) range, where the frequency bands within the E-band and F-band have been
allocated. Photonics is a key technology to generate low phase noise signals, offering methods of generating continuous
MMW with varying performance in terms of frequency bandwidth, tunability, and stability.
Recently, we demonstrated for the first time of our knowledge the generation of a 95-GHz signal by optical heterodyning
of two modes from different channels of a monolithically integrated arrayed waveguide grating multi-wavelength laser
(AWGL). The device uses an arrayed waveguide grating (AWG) as an intra-cavity filter. With up to 16-channel sources
with independent amplifiers and a booster amplifier on the common waveguide, the laser cavity is formed between
cleaved facets of the chip. The two wavelengths required for optical heterodyning are generated activating
simultaneously two channel SOAs and the Boost amplifier.
In this work, we analyze the effect on the dual-wavelength operation of the Boost SOA, which is shared by two
wavelengths. Mapping the optical spectrum, sweeping the two channel and Boost bias currents, we show the interaction
among the different SOAs two find the regions of dual wavelength operation. The size of dual wavelength operation
region depends greatly on the Boost SOA bias level. Initial results of a numerical model of the AWGL will be also
presented, in which a digital filter is used to implement the AWG frequency behavior.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.