Proceedings Article | 12 October 2012
Proc. SPIE. 8473, Laser Material Processing for Solar Energy
KEYWORDS: Solar cells, Dielectrics, Silicon, Laser processing, Laser applications, Doping, Laser ablation, Picosecond phenomena, Semiconducting wafers, Pulsed laser operation
The laser as an industrial tool is an essential part of today’s solar cell production. Due to the on-going efforts in the solar industry, to increase the cell efficiency, more and more laser-based processes, which have been discussed and tested at lab-scale for many years, are now being implemented in mass production lines. In order to cope with throughput requirements, standard laser concepts have to be improved continuously with respect to available average power levels, repetition rates or beam profile. Some of the laser concepts, that showed high potential in the past couple of years, will be substituted by other, more economic laser types. Furthermore, requirements for
processing with less-heat affected zones fuel the development of industry-ready ultra short pulsed lasers with pulse widths even below the picosecond range. In 2011, the German Ministry of Education and Research (BMBF) had launched the program “PV-Innovation Alliance”, with the aim to support the rapid transfer of high-efficiency processes out of development departments and research institutes into solar cell production lines. Here, lasers play an important role as production tools, allowing the fast
implementation of high-performance solar cell concepts. We will report on the results achieved within the joint project FUTUREFAB, where efficiency optimization, throughput enhancement and cost reduction are the main goals. Here, the presentation will focus on laser processes like selective emitter doping and ablation of dielectric layers. An indispensable part of the efforts towards cost reduction in solar cell production is the improvement of wafer handling and throughput capabilities of the laser processing system. Therefore, the presentation will also elaborate on new developments in the design of complete production machines.