Here, we demonstrate the benefits of acousto-optic deflector (AOD) technologies for advanced spatio-temporal beam control in CO2 via drilling. Spatially, we demonstrate the ability to drill multiple via sizes on the fly, enabling the drilling of multiple via sizes on one panel within one single pass. Temporally, we demonstrate the ability to slice one laser pulse into multiple sections, enabling fine-tuning of the pulse energy profile delivered to the workpiece. Furthermore, we compare via drilling results using AODs to those drilled with traditional punch processes, showing advantages in both throughput and quality in comparison to traditional imaging-based CO2 drilling systems.
In our recent work, we have generated the shortest wavelengths from periodically-poled lithium niobate (PPLN) in the vicinity of 62.5 microns at the poling period of 7.1 microns. We have demonstrated large enhancements in the output powers from three gratings. For the long-poling periods, we have generated THz radiation with output wavelengths in the range of 126-1382 μm and output powers as high as 432 μW, corresponding to the photon conversion efficiency of 29%. We have also efficiently generated far-infrared radiation at the wavelengths centered at 20.8 microns in the vicinity of one of the polariton resonances of lithium niobate. Such an efficient nonlinear conversion is made possible by exploiting phase-matching for difference-frequency generation in lithium niobate. The highest peak power reached 233 W. These wavelengths correspond to the shortest wavelength in the terahertz region and longest wavelength in the mid-infrared/far-infrared regions from lithium niobate, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.