The development of ways to increase the intensity of extreme ultraviolet (EUV) light sources for future EUV lithography is important to realize high throughput fine patterning. The energy-recovery linac (ERL) free-electron laser (FEL), which is an accelerator based light source, is a candidate for this. We clarify the design concept of the ERL-FEL for EUV light sources for future lithography, delivery systems of the FEL light to multiscanners, and future development items of the accelerator technologies and a possibility of the beyond EUV.
An ERL-based EUV-FEL can provide EUV power of more than 1 kW for multiple scanners to overcome stochastic effects with a higher throughput. An IR-FEL project started at the KEK cERL as a NEDO project in order to develop high-power IR lasers for high-efficiency laser processing, and it can demonstrate proof of concept of the EUV-FEL for future lithography. The IR-FEL was constructed in May 2020 and commissioned in June to July 2020 and in February to March 2021. We will briefly review the EUV-FEL and present the construction and commissioning of the cERL IR-FEL for realizing the EUV-FEL for future lithography.
An EUV-FEL is one of the promising candidates for the future high power EUV light source of more than 1 kW. While the design study on the FEL light source has been progressed, a most important milestone should be a real demonstration of the high repetition rate ERL-based FEL light production. In FY2019, a real Mid-Infrared FEL (MIR-FEL) project based on the compact ERL in KEK started and the beam commissioning was started from the beginning of March 2020. At the conference, the present results obtained from the MIR-FEL and the expected remained-study-works on future EUV-FEL will be presented.
It is important to develop the high power EUV light source up to 1 kW to realize the 3nm node to reduce stochastic variation and achieve a higher through put. To this end, we have proposed an energy recovery linac (ERL)-based free electron laser (FEL) ,which will produce more than 10 kW EUV light to provide the light into several scanners. We studied the feasibilities to reduce the size of the accelerator system itself, and the part of them was presented at the previous symposium last year. And we also gave an idea to develop the POC of the ERL-FEL by using compact ERL (cERL) as a first stage of the EUV-FEL. In this paper, we present the upgrade plan of cERL for the POC.
The technologies to be clarified are both of to realize the SASE-FEL based on the ERL and to achieve short electron bunch around 100fs for EUV-FEL light generation. The former is that the energy of the electron beams after the FEL generation can be recovered with the ERL accelerator systems with the high repetition rate such as more than 100MHz. The POC will be completed at the wavelength of near infrared, because of the size limitation of the cERL. The latter will be also realized at the cERL by the bunch compression scheme using a combination of electron beams with a momentum chirp and magnet assemblies with a non-zero longitudinal dispersion.
The design values of the upgrade are as follows; the energy of the recirculation electron is 80 MeV, energy of the injection electron is 5 MeV, wavelength of the FEL is 1.35 micron, electron beam current is 10mA, bunch charge is 60 pC/bunch, repetition rate is 162.5 MHz. We have already studied the electron trajectory by using simulation, and checked the feasibilities. We will give detailed studies on the POC.
It is important to develop the high power EUV light source up to 1 kW to realize the 3nm node, which is expected to be in production at 2023-24. To this end, an energy recovery linac (ERL)-based free electron laser (FEL) must be a most promising candidate, so that our group has done some feasibility studies from the view point of accelerator technology. In order to realize the EUV-FEL high power light source, it is also important to recognize the demand of end users and related problems on the FEL light source. Last year, we attended many conferences and workshops to learn these items and also we organized one day workshop “EUV-FEL Workshop” at Tokyo. You can find the presentation materials in a website of http://pfwww.kek.jp/PEARL/EUV-FEL_Workshop/presentaions.html.
One of the most important requirements is to reduce the size of the EUV-FEL system. The total system size is about 200 m (L).x 20 m (W) at our current design of the EUV-FEL with 160m linac, where the acceleration energy and current are 800 MeV and 10 mA, respectively. However, we had comments from semiconductor industry that it is too long to install the light source in a usual LSI Fab, so that we have to find out solutions to reduce the length of the accelerator systems to ~100 m. To this end, there are following several challenges.
1) Increasing the field gradient of the superconducting RF (SRF) cavity to reduce the total length of the linac.
2) Higher Q to reduce the RF loss in higher field gradient SRF cavity.
3) Reduction of the acceleration energy by introducing shorter period undulator .
4) Double loop accelerator system, in which the electron passes through a same linac twice and accelerated up to twice energy or accelerating cavities are placed on both loop sides.
The R&D directions of the above challenges on accelerator technologies will be presented.
The authors developed terahertz (THz) imager which incorporates 320x240 focal plane array (FPA) with enhanced sensitivity in sub-THz region (ca. 0.5 THz). The imager includes functions such as external-trigger imaging, lock-in imaging, beam profiling and so on. The function of the external-trigger imaging is mainly described in this paper, which was verified in combination of the THz imager with the pulsed THz free electron laser (THz-FEL) developed by Osaka University.
The THz-FEL emits THz radiation in a wavelength range of 25 - 150 μm at repetition rates of 2.5, 3.3, 5.0 and 10 pulses per second. The external trigger pulse for the THz imager was generated with a pulse generator, using brightening pulse for THz-FEL. A series of pulses emitted by the THz-FEL at 86 μm were introduced to the THz imager and Joule meter via beam splitter, so that the output signal of THz imager was normalized with the output of the Joule meter and the stability of the THz radiation from FEL was also monitored. The normalized output signals of THz imager (digits/μJ) obtained at the repetition rates mentioned above were found consistent with one another. The timing-relation of the external trigger pulse to the brightening pulse was varied and the influence of the timing-relation on beam pattern is presented. These experimental results verify that the external trigger imaging function operates correctly.
Uncooled microbolometer-type 640x480 and 320x240 Terahertz (THz) focal plane arrays (FPAs) with enhanced sensitivity in sub-THz region are developed, and incorporated into 640x480 and 320x240 cameras, respectively. The pixel in the THz-FPA has such a structure that an area sensitive to electromagnetic wave is suspended above read-out integrated circuit (ROIC). A thin metallic layer is formed on the top of the sensitive area, while a thick metallic layer is formed on the surface of ROIC. The structure composed of the thin metallic layer and the thick metallic layer behaves as an optical cavity. The THz-FPAs reported in this paper have a modified pixel structure which has several times longer optical-cavity length than NEC’s previous pixel does, by forming a thick SiN layer on the ROIC. The extended optical-cavity structure is favorable for detecting electromagnetic wave with lower frequency. Consequently, the Minimum Detectable Power per pixel (MDP) is improved ten times in sub-THz region, especially 0.5-0.6 THz. This paper presents spectral frequency dependences of MDP values for THz-FPA with the modified pixel structure and THz-FPA with the previous pixel structure, using THz free electron laser (FEL) developed by Osaka University. The modification of pixel structure extends high sensitivity region to lower frequency region, such as sub-THz region, and the wider spectral coverage of THz camera surely expands its applicability
Image reconstruction method for non-synchronous THz signals was developed for a combination of THz Free Electron
Laser (THz-FEL) developed by Osaka University with THz imager. The method employs a slight time-difference
between repetition period of THz macro-pulse from THz-FEL and a plurality of frames for THz imager, so that image
can be reconstructed out of a predetermined number of time-sequential frames. This method was applied to THz-FEL
and other pulsed THz source, and found very effective. Thermal time constants of pixels in 320x240 microbolometer
array were also evaluated with this method, using quantum cascade laser as a THz source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.